Engine Power plant
Technical comparisons:
Combustion engines and gas turbines

Combustion engine vs gas turbine: fuel flexibility

Power plants that can reliably operate on a variety of gaseous or liquid fuels provide energy security in the event of fuel supply disruptions. Wärtsilä multi-fuel engines can instantaneously switch fuels while maintaining full output and high efficiency. This flexibility provides a key advantage over gas turbines which have reduced availability and output when running on fuel oils. With fuel flexibility, Wärtsilä power plants can meet evolving dispatch needs and agilely respond to changes in fuel availability.
Energy security remains a significant concern for many countries around the world. Potential threats include geopolitical instability, fuel supply disruptions and fluctuating fuel costs. Availability of natural gas is increasing especially due to global expansion of LNG supply infrastructure, but inflexibility in supply chains and fluctuating prices are causing uncertainty. Fuel shortages, supply interruptions and price constraints – even if only temporary – pose considerable economic and electric reliability risks. To mitigate fuel risk, some countries are now specifying multi-fuel capability for new power plants, recognizing that fuel flexibility is vital for ensuring a dependable source of electricity.

What is Fuel Flexibility?

Fuel flexibility is the ability to burn a variety of fuels and immediately switch fuels during operation without reducing load or sacrificing power plant availability. Liquid fuels, and alternative gaseous fuels that can be used for electric power generation include liquefied petroleum gas (LPG), crude oil, residual fuel oils (RFO), and distillate fuels including light fuel oils (LFO), naphtha and diesel. However, not all power plants are designed to run on liquid fuels for extended periods of time. When natural gas shortages cause gas turbines to burn fuel oil as backup, additional inspection and maintenance is required, resulting in more frequent outages. Wärtsilä combustion engines are designed to burn a variety of gaseous and liquid fuels without incurring increased maintenance or reducing availability, providing an efficient reliable power supply 24/7/365.
While gas turbines are often advertised as having fuel flexibility, about 90 percent of gas turbines worldwide operate on natural gas or liquefied natural gas (LNG) because of its purity and ease of combustion. Only about 400 GE gas turbines globally operate on crude, naphtha or heavy fuel oils. The fleet of Wärtsilä plants with fuel oil capability includes over 4000 plants encompassing 8900 engines in 165 countries, as shown in Figure 1. A number of Wärtsilä power plants were designed to operate on liquid fuels while natural gas infrastructure was built or expanded, leveraging multi-fuel capability to meet both short-term and long-term power needs.
Wärtsilä Power Plants Operating on Fuel Oils

Figure 1: Extensive Global Fleet of Wärtsilä Power Plants Operating on Fuel Oils

In addition to liquid fuels, Wärtsilä offers multi-fuel solutions that use LPG as fuel, together with either liquid fuel or natural gas as an alternative fuel. LPG is an increasingly attractive fuel in power generation especially in islands and smaller power systems, due to its wide availability and low infrastructure costs.

Maintenance Issues for Gas Turbines Operating on Fuel Oils

Liquid fuels present many challenges for gas turbines because they can contain water-soluble salts, high concentrations of heavy metals and other impurities. Crude and residual oils are more viscous and contain higher concentrations of trace metals than distillates. Metals and salts are abrasive to turbine blades and can create ash deposits which lead to fouling and corrosion in hot gas path components. Because combustion occurs continuously in gas turbines, the unit must be taken offline for inspection and maintenance. A combination of fuel conditioning (cleaning, blending, heating and pressurization) and more frequent maintenance cycles are required for gas turbines running on fuel oil. Catalysts may be added to improve combustion, and in some cases, heavy fuel oils (HFO) or crude may be blended with higher purity liquid fuels to achieve permissible sulfur, ash and metals content. Fuels containing vanadium or lead, which are oil-soluble and cannot be removed by washing or centrifuging, require corrosion inhibitors for use in gas turbines. Generally distillate fuels are considered to be relatively free of contaminants, but contamination during fuel transportation and delivery has led to occurrences of corrosion in gas turbines.

Overhauling a gas turbine that was designed for natural gas to burn liquid fuels is costly and requires adjustment of the firing temperature control, revised startup and shutdown procedures, and offline cleaning cycles to remove ash deposits. As a result, the availability of the gas turbine power plant is decreased. Because certain fuel oils contain volatile components with low flash points (such as naphtha), explosion protection is also often required for gas turbines. Thus, the ability of most gas turbines to operate on liquid fuels is very limited, in terms of the characteristics of fuels oils that can be used and the amount of time the turbine can operate on such fuels.

Liquid fuel options for gas turbines vary by manufacturer and model, with some gas turbines only able to use No. 2 distillate. Multiple fuel delivery systems and combustors are employed to accommodate different fuels. GE offers an HFO package for their 7E and 9E gas turbines; the Siemens SGT-500 gas turbine can burn crude, HFO and bio-oils; and Alstom offers fuel oil capability on their GT24 and GT26 models.

Wärtsilä engine maintenance is not affected by fuel type as the engines are not sensitive to metals or salts in fuel oils. No corrosion inhibitors are needed and only minimal fuel conditioning (centrifugal separators and filters) is required to burn lower quality fuels including HFO/RFO and crude. Because combustion occurs intermittently in combustion engines with the expulsion of combustion products during the exhaust stroke, the buildup of ash deposits is prevented.

While the use of ash-forming fuels (such as HFO) reduces gas turbine output by 4 to 5 percent compared to natural gas operation, Wärtsilä multi-fuel engines retain the same output and high efficiency whether running on natural gas, LFO or HFO. If the natural gas supply is interrupted, a Wärtsilä multi-fuel power plant instantaneously switches to a backup fuel oil and maintains load without incurring any maintenance penalty. When routine maintenance is required, the modular architecture of Wärtsilä power plants allows an engine to be taken offline while maintaining the bulk of plant output.

Wärtsilä dual-fuel (DF) engines use lean-burn combustion technology when operating on gas and a normal diesel process when operating on fuel oil. Wärtsilä DF engines have three fuel delivery systems that work in parallel: a pilot fuel injection system, a liquid fuel supply, and a gas admission system. The liquid backup fuel system allows the engine to transfer automatically and instantaneously from gas operation to liquid fuel operation at any load. The tri-fuel delivery allows instantaneous switching from LFO to HFO as well. Fuel flexibility was a major factor in the selection of Wärtsilä multi-fuel engine technology to help solve energy supply problems in Jordan. The 573 MW IPP3 plant, comprised of 38 Wärtsilä 50DF engines that can utilize natural gas, LFO and HFO is the largest tri-fuel power plant in the world, providing Jordan with dependable power.

While gas turbines require about 10 minutes to switchover from baseload gas to fuel oil, Wärtsilä multi-fuel engines can switch from natural gas to fuel oil instantaneously. Switching back to gas from liquid fuel takes approximately 90 seconds with no load reduction. As shown in Table 1 below, Wärtsilä multi-fuel engines offer numerous advantages over gas turbines for flexible fuel solutions including the ability to operate on a wide range of fuels without sacrificing power plant availability or incurring additional maintenance costs. This fuel flexibility provides cost savings because a Wärtsilä power plant can ensure a secure power supply as fuel supplies change over time.

Fuel flexibility characteristic

Wärtsilä DF enginesGas turbines

Ability to run on natural gas, crude, HFO and LFO

Instantaneous switchover from gas to fuel oil

 

Switch fuels while maintaining full load

 

Insensitive to metals and salts in fuel oils

 

No increased maintenance needs when running on fuel oil

 

Table 1. Fuel Flexibility of Wärtsilä Engines Compared to Gas Turbines

Related articles

From Texas to Nigeria: engine power plants provide the flexibility to mitigate gas supply issues and support growth in renewables
13 OCT 2021 Article
5 min read

From Texas to Nigeria: engine power plants provide the flexibility to mitigate gas supply issues and support growth in renewables

In North America...
Wärtsilä Balancing solution
14 SEP 2021 Article
6 min read

How flexibility can balance peaks and valleys of energy production - case Brazil

To ensure reliability, intermittent energy like wind and solar need...
Nigeria energy
26 NOV 2019 Article
5 min read

How renewables are electrifying Nigeria’s future

Nigeria currently produces only a fraction of the electricity its growing population needs. How can...

Wärtsilä Energy. Let's connect.