POWER PLANTS SOLUTIONS

2014

WÄRTSILÄ
<table>
<thead>
<tr>
<th>OUR MISSION</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>The power system of the future. Available today.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER PLANTS SOLUTIONS</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the right reasons</td>
<td>10</td>
</tr>
<tr>
<td>Worldwide success stories</td>
<td>12</td>
</tr>
<tr>
<td>A solution for every need</td>
<td>14</td>
</tr>
<tr>
<td>Key figures about Wärtsilä Power Plants</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAS POWER PLANTS</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärtsilä 50SG gas power plant</td>
<td>20</td>
</tr>
<tr>
<td>Wärtsilä 34SG gas power plant</td>
<td>22</td>
</tr>
<tr>
<td>Wärtsilä 34SG grid stability/emergency gas power plant</td>
<td>24</td>
</tr>
<tr>
<td>Wärtsilä GasCube</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTI-FUEL POWER PLANTS</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärtsilä 50DF multi-fuel power plant</td>
<td>30</td>
</tr>
<tr>
<td>Wärtsilä 34DF multi-fuel power plant</td>
<td>32</td>
</tr>
<tr>
<td>Wärtsilä 34DF grid stab./emergency multi-fuel power plant</td>
<td>34</td>
</tr>
<tr>
<td>Wärtsilä 32GD multi-fuel power plant</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIQUID FUEL POWER PLANTS</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärtsilä 46 & Wärtsilä 50DF liquid fuel power plants</td>
<td>40</td>
</tr>
<tr>
<td>Wärtsilä 32 liquid fuel power plant</td>
<td>42</td>
</tr>
<tr>
<td>Wärtsilä 32 grid stability/emergency liquid fuel power plant</td>
<td>44</td>
</tr>
<tr>
<td>Wärtsilä OilCube</td>
<td>46</td>
</tr>
</tbody>
</table>
Electricity consumption will continue to grow rapidly during the coming decades. At the same time, concerns related to global warming and declining fossil fuel resources have created a need, supported by political pressure, to reduce carbon emissions through renewable power. At present, renewable sources, hydropower excluded, cover a good 3% of total production, but their share is rapidly growing.
Providing intermittency problems can be efficiently resolved, wind or solar based electricity offers great potential. The variability of wind and solar power creates new challenges to power systems which cannot be solved by any grid solution. Even small variations in wind speed – which can happen many times per day within time frames of less than 15 minutes – have a dramatic impact on wind power output. In power systems with high shares of installed wind power capacity, this is a challenge which the system is not designed to handle.

The existing power systems need to be complemented by dispatchable, dynamic capacity with the capability of
handling frequent fast starts, stops and load ramps. To ensure a sustainable, reliable and affordable power system a dynamic capacity which corresponds to roughly half of the installed intermittent power capacity is required.

The existing power systems need to be complemented by dispatchable, dynamic capacity with the capability of handling frequent fast starts, stops and load ramps. To ensure a sustainable, reliable and affordable power system an amount of dynamic capacity which corresponds to roughly half of the installed intermittent power capacity is required.

BALANCING THE POWER SYSTEM

Wärtsilä’s power plants enable transition to a modern, sustainable power system. The main corner-stones are very high energy efficiency, outstanding operational flexibility, and multi-fuel operation. For today’s emerging
low-carbon power systems, they balance large input fluctuations of wind and solar power. They also provide high efficiency base load, peak load, and load-following power, as well as super-fast grid reserves on a national power system level.

Wärtsilä’s technology and power plant solutions have been developed to provide a unique combination of valuable features that enable new horizons for future sustainable, reliable and affordable national power systems. The applications range from stationary and floating baseload power plants to dynamic grid stability and peak load services, as well as a wide variety of industrial self-generation applications.

Reservoir hydropower, where available, and smart grids with demand response, assist in the balancing task. When complementing the power system with Wärtsilä’s solutions, all system balancing challenges can be solved, even with the maximised use of intermittent renewables.
OPERATIONAL FLEXIBILITY

Being able to operate in multiple modes, from efficient baseload power production to dynamic system balancing in combination with, for example, wind or solar power, Wärtsilä power plants become a key factor in optimising power systems.

They offer ultra fast, zero-emissions, non-spinning grid reserve for any contingency situation or grid black start. They can generate megawatts to the grid in less than a minute from start-up and reach full load in less than five minutes. They are designed to start and stop – at the push of a button – time after time without impact on maintenance.

The multi-unit configuration allows plant availability and reliability of close to 100%, as well as highest possible firm capacity. They also ensure rapid load following and peak load capability with fast frequency regulation and an efficient spinning reserve.

Wärtsilä’s plants are also easy to locate next to critical load pockets, i.e. in cities, thanks to plant size, and low emission and noise levels, and thus reduce the grid investment cost notably. The infrastructural requirements are modest, with little or no water consumption, and low pipeline gas pressure needed.
ENERGY EFFICIENCY

Power plants based on multiple generating units are far more reliable and fuel efficient than single – or several – large power stations. They also serve efficiently on part load and in demanding ambient conditions, enabling high dispatch even in hot climates and at high altitudes. We also offer the highest available simple cycle energy efficiency of current technologies, 50% or more. With the Flexicycle™ solution the advantages of a flexible simple cycle plant are combined with the superb efficiency of a combined cycle plant.

FUEL FLEXIBILITY

Wärtsilä’s multi-fuel plants enable the continuous choice of the most feasible fuel, including solutions for liquid and gaseous fuels as well as renewables. The possibilities gained from multi-fuel plants and fuel conversion solutions represent a hedge for the future. The role of natural gas in power generation is expected to grow significantly over the coming years. Recent technical breakthroughs and the commercialisation of shale gas have resulted in a substantial extension of the perceived depletion time of gas reserves, and have lowered the price of natural gas. With power plants running on gas, the 27% renewable energy share target set for 2030 by entities like the EU is within reach.

(Read more on pp. 84 - 87)
Wärtsilä power plants are designed for optimal performance in a wide variety of power production applications, and provide fast and flexible capacity with multiple dynamic operation modes, from ultra-fast grid reserve to efficient baseload generation. These sustainable and affordable power plants have the highest energy efficiency, thus enabling cost-effective and secure power generation regardless of changes in pricing and availability of fuels.

... Excellent plant availability and reduced need for back-up capacity due to multi-unit installation

... Fast start-up, power to the grid in less than 1 minute, and full plant load in less than 5 minutes from hot standby

... Best load following capabilities of any fossil fuel technology (>100%/min)

... CHP & Trigeneration as options

... Modularized solutions, available as engineered equipment deliveries or EPC (turnkey)

... Flexible maintenance schedules allowing maximum firm capacity
... Low primary emissions. The strictest regulations can be met with secondary abatement equipment, both with gas and liquid fuels

... Plant electrical efficiency of up to 50% in simple cycle and up to 54% in combined cycle

... Near-full plant output can be obtained even at high altitudes and hot and dry ambient conditions

... Maintenance schedule independent of the number of starts or stops

... Low gas pressure required

... Black start capability

... Stepwise investment at smaller risks and optimised profit generation

... High efficiency at any load

... High starting reliability

... Minimal water consumption due to closed-circuit radiator cooling
WORLDWIDE SUCCESS STORIES

PLAINS END, COLORADO, USA

Minimum load operation at 6150 feet (1845 m) and 97°F (36°C) without any loss of efficiency. Welcome to Plains End.

Read more on page 24

QUISQUEYA, DOM. REPUBLIC

In this double-header project, You cannot clearly draw a line between the power supplied to the industrial customer and that supplied to the local community, nor between the corporate profit and the social one.

Read more on page 52

more than 10800 of our engines have been delivered to
Successfully using proven, reliable technology for a new purpose. That’s also innovation.

Read more on page 34

From collateral damage to self-sufficiency – with 573 MW of Wärtsilä power Jordan plans to enter a sustainable, reliable and affordable energy future.

Read more on page 30

As we understand it, only a deep mutual understanding of a project can lead to the best results. And that is exactly what we achieved in Sasolburg.

Read more on page 22
A SOLUTION FOR EVERY NEED

FLEXICYCLE™ PLANTS
- Typical size: 60-700MW
- Efficiency: 50-54%
- Running hours: 4000-8760 h/year
- Operation mode: Flexible baseload
- Daily starts and stops
- Based on high efficiency Wärtsilä 50 engine + steam turbine

WÄRTSILÄ 50/46 PLANTS
- Typical size: 50-700MW
- Efficiency: 46-50%
- Running hours: 2000-8760 h/year
- Operation mode: Flexible baseload
- Daily starts and stops
- Based on high efficiency Wärtsilä 50 or 46 engine

POWER CUBES
- Typical size: 5-30MW
- Special design for small plants and quick delivery
Wärtsilä 34/32 Plants
Typical size: 10-400MW
Efficiency: 45-49%
Running hours: 1000-8760 h/year
Operation mode: Flexible baseload, peak load
Frequent starts and stops
Based on flexible Wärtsilä 34 or 32 engine

Grid Stability Plants
Typical size: 20-400MW
Efficiency: 45-48%
Running hours: 50-2000 h/year
Operation mode: Peak load, standby & emergency
Frequent starts, stops and standby
Based on flexible Wärtsilä 34 or 32 engine with additional features
KEY FIGURES ABOUT WÄRTSILÄ POWER PLANTS

PLANT OUTPUT (MW)
Typical size of the power plant

CONFIGURATION
Number and type of gensets that correspond to the typical size of the plant.

POWER PLANT AREA (m²/100MW)
Area needed to build a 100MW plant. In liquid fuel and multi-fuel plants, this includes a typical-sized HFO/LFO tank area.

MINIMUM LOAD (%)
Lowest plant load that can be maintained for extended periods of time, calculated for a 10-unit plant.
- E corresponds to Efficiency mode, when load is reduced by turning off units.
- S corresponds to Spinning mode, when all units are kept online at minimum load.

RAMP RATE (%/min)
Percentage of the total load that the plant can increase in a minute in order to provide ancillary services.

EFFICIENCY (%)
Plant efficiency based on ISO 3046 conditions and tolerances, excluding auxiliary system losses.
START&STOP TIMES

The SYNC number represents the time needed to come online and start producing power. The FULL number represents the total time required from start command to reach 100% output.

REGULAR START TIME (min)
Start time based on warm standby (preheated or operated in the last 12h).

A faster start time translates into the plant being online sooner, thus generating additional power and producing revenue for a longer time.

FAST START TIME (min)
Start time based on hot standby (preheated to a higher temperature or operated in the last 6h).

If the plant is preheated at a slightly higher temperature, starting times can be cut substantially. This field is the equivalent of the previous one in those warm standby conditions.

ULTRA FAST START TIME (min)
Start time based on hot standby plus certain start preparations (preheated and quick start prepared, or operated in the last 1h).

Certain plants can be fitted with an ultra fast start capability, which dramatically cuts the starting time even further.

STOP TIME (min)
Time it takes to decrease output from 100% to 0%, disconnect from grid and come to a complete stop.

A shorter unloading time adds flexibility to adapt to any load conditions and only being online when it is profitable, saving fuel and reducing emissions.
Wärtsilä gas power plants use natural gas, the cleanest fossil fuel available, in the most economical way, due to their high efficiency at any load and unbeatable flexibility to start and stop exactly according to needs. Natural gas is a very valuable resource, let’s not waste it!

Besides the combination of efficiency and flexibility, they also offer low emissions, and can provide a great amount of power in a reduced site, making it the optimal solution for locations where minimizing the impact is a priority. As such, they can be placed close to consumption nodes, optimizing the power system.

Wärtsilä gas power plants can run on natural gas, LNG and selected biogases.

The specific benefits for gas power plants include:

- Plant electrical efficiency of up to 50% in simple cycle and 54% in combined cycle mode

- Only 5 bar gas pressure requirements for operation, which means no gas compressor is needed at the plant.

- Lean-burn technology guarantees very low emissions by itself, complying with most regulations, including IFC (World Bank group). By adding a SCR, even the most stringent standards worldwide can be met.
Wärtsilä 50SG gas power plant
High efficiency in a small footprint combined with high reliability and flexibility. Powered by the most efficient gas combustion engine in the world.

Perfect for: Flexible baseload

Wärtsilä 34SG gas power plant
Agile and flexible, this plant delivers power with high efficiency and reliability, even in the most challenging ambient and operational conditions.

Perfect for: Peak load, flexible baseload

Wärtsilä 34SG grid stability / emergency gas power plant
Designed for low own consumption combined with ultimate flexibility, gives extremely fast response to emergency situations, and able to supply megawatts in a matter of seconds.

Perfect for: Standby & emergency, peak load

Wärtsilä GasCube
Fully pre-engineered solution for quick installation time with all the great features of the Wärtsilä 34 gas power plant.

Perfect for: Small-sized power plants

Want to know more?
Scan this QR code with your smartphone, tablet or webcam and have an in-depth look at our multi-fuel technology. Or you can simply type goo.gl/QmQgby in your web browser
WÄRTSILÄ 50SG GAS POWER PLANT

High efficiency in a small footprint combined with high reliability and flexibility makes this solution perfect for flexible baseload applications including daily starts and stops, also providing ancillary services like regulation up & down and tertiary reserves.

- Most efficient single-cycle solution: over 50% efficiency with turbogenerator
- Combined cycle-like efficiency from a simple cycle solution
- Full power can be achieved with a wide range of gas qualities, a varying methane number or heating value do not affect the operation
- Robust, reliable genset, proven in the most challenging environments
- Makes the most out of the cleanest fossil fuel available - natural gas
- Minimum area requirement for a given output

KEY FIGURES

See legend on p. 16

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Sync</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>50-700</td>
<td><2</td>
<td><10 min</td>
</tr>
<tr>
<td>%/min</td>
<td>>100</td>
<td><2</td>
<td><5 min</td>
</tr>
<tr>
<td>%</td>
<td>30%</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m²/100MW</td>
<td>4450</td>
<td>50%</td>
<td><1 min</td>
</tr>
</tbody>
</table>

WÄRTSILÄ 50SG HIGH EFFICIENCY GAS POWER PLANT

High efficiency in a small footprint combined with high reliability and flexibility makes this solution perfect for flexible baseload applications including daily starts and stops, also providing ancillary services like regulation up & down and tertiary reserves.

- Most efficient single-cycle solution: over 50% efficiency with turbogenerator
- Combined cycle-like efficiency from a simple cycle solution
- Full power can be achieved with a wide range of gas qualities, a varying methane number or heating value do not affect the operation
- Robust, reliable genset, proven in the most challenging environments
- Makes the most out of the cleanest fossil fuel available - natural gas
- Minimum area requirement for a given output

KEY FIGURES

See legend on p. 16

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Sync</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>50-700</td>
<td><2</td>
<td><10 min</td>
</tr>
<tr>
<td>%/min</td>
<td>>100</td>
<td><2</td>
<td><5 min</td>
</tr>
<tr>
<td>%</td>
<td>30%</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m²/100MW</td>
<td>4450</td>
<td>50%</td>
<td><1 min</td>
</tr>
</tbody>
</table>

WÄRTSILÄ 50SG GAS POWER PLANT

High efficiency in a small footprint combined with high reliability and flexibility makes this solution perfect for flexible baseload applications including daily starts and stops, also providing ancillary services like regulation up & down and tertiary reserves.

- Most efficient single-cycle solution: over 50% efficiency with turbogenerator
- Combined cycle-like efficiency from a simple cycle solution
- Full power can be achieved with a wide range of gas qualities, a varying methane number or heating value do not affect the operation
- Robust, reliable genset, proven in the most challenging environments
- Makes the most out of the cleanest fossil fuel available - natural gas
- Minimum area requirement for a given output

KEY FIGURES

See legend on p. 16

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Sync</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>50-700</td>
<td><2</td>
<td><10 min</td>
</tr>
<tr>
<td>%/min</td>
<td>>100</td>
<td><2</td>
<td><5 min</td>
</tr>
<tr>
<td>%</td>
<td>30%</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m²/100MW</td>
<td>4450</td>
<td>50%</td>
<td><1 min</td>
</tr>
<tr>
<td>Customer</td>
<td>STEC (IPP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Wärtsilä 50SG gas power plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating mode</td>
<td>Flexible baseload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gensets</td>
<td>12 x Wärtsilä 18V50SG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total output</td>
<td>224 MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope</td>
<td>EEQ (Engineered Equipment Delivery)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivered</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WÄRTSILÄ 34SG GAS POWER PLANT

Agility and flexibility combined with high efficiency over the whole load range and in any operating profile makes this plant excellent for both flexible baseload and peak load, and supporting the grid with a variety of ancillary services.

- Ultimate combination of efficiency and flexibility. Over 49% efficiency after only 5 minutes from start
- Best up- and down- ramp rates in the industry
- Full power can be achieved with a variety of gaseous fuels, from methane to LPG, without affecting the operation
- Makes the most out of the cleanest fossil fuel available - natural gas
- Genset is easily transported in one piece to challenging locations

KEY FIGURES

See legend on p. 16

<table>
<thead>
<tr>
<th></th>
<th>SYNC</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td><2</td>
<td><10</td>
</tr>
<tr>
<td>%/min</td>
<td><2</td>
<td><5</td>
</tr>
<tr>
<td>10-400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-36 X</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>20V34SG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m²/100MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49%</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SNE decided to reduce their carbon emissions and generate power for the industrial operations of its associated company, investing in a Wärtsilä 34SG gas power plant. At a high altitude and hot temperature site, the plant sits in a challenging environment, but that does not hinder its performance.

Scan the QR code or visit goo.gl/9q85ef to read the full success story.

SASOLBURG, South Africa

<table>
<thead>
<tr>
<th>Customer</th>
<th>SNE (IPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Wärtsilä 34SG gas power plant</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Flexible baseload</td>
</tr>
<tr>
<td>Gensets</td>
<td>18 x Wärtsilä 20V34SG</td>
</tr>
<tr>
<td>Total output</td>
<td>175 MW</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
</tr>
<tr>
<td>Scope</td>
<td>EPC (Engineering, Procurement & Construction)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2012</td>
</tr>
</tbody>
</table>

Gas-engine technology allows us to reduce our carbon footprint by more than 40%.”

—Henri Loubser, Managing Director, SNE
WÄRTSILÄ 34SG GRID STABILITY/EMERGENCY GAS POWER PLANT

Always ready to deliver power to the grid instantly and efficiently in any operating profile makes this plant perfect for peaking and reseve power applications.

- Ultra fast start capability provides megawatts to the grid in seconds and full plant output in less than 2 minutes
- Able to provide non-spinning secondary reserve thanks to a 30-second ultra fast sync time
- The flexibility of a hydro plant in a gas-fired plant
- Genset is easily transported in one piece to challenging locations
- Able to provide grid blackstart capability and re-energize a grid even with low gas pressure
- Extremely low standby consumption, <1 kW per MW of installed power

KEY FIGURES
See legend on p. 16

- 20-400 MW
- > 100 %/min
- 2-24 X 20V34SG
- 30 % 3 %
- 6900 m²/100MW
- 48%
- < 1 min
- <2 min
- <10 min
- <2 min
- <5 min
- 0:30
- 1:30 min:sec
This extremely flexible plant was so successful chasing the winds of the Rocky Mountains that its owner decided to order an expansion and double its capacity only five years after its commissioning, turning it into the largest gas engine-based power plants in the United States.

PLAINS END, Colorado, USA

<table>
<thead>
<tr>
<th>Customer</th>
<th>Tyr Energy (IPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Wärtsilä 34SG grid stability/emergency gas power plant</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Peak load/stand-by & emergency</td>
</tr>
<tr>
<td>Gensets</td>
<td>20 x Wärtsilä 18V34SG + 14 x Wärtsilä 20V34SG</td>
</tr>
<tr>
<td>Total output</td>
<td>231 MW</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
</tr>
<tr>
<td>Scope</td>
<td>EEQ (Engineered Equipment Delivery)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2001 & 2006</td>
</tr>
</tbody>
</table>

Scan the QR code or visit goo.gl/SHkxEv to read the full success story.

During breakfast and dinner hours demand increases and the plant follows this perfectly. This is the way. This is the future”

—Kent L. Fickett, Former SVP, PG&E.
WÄRTSILÄ GASCUBE

All the great features of 34SG in a compact, ready-to-use pre-engineered package designed for fast delivery time with minimal site work. Consists of a self-contained design with one or several modules, each housing one 16V34SG or 20V34SG genset, plus all the auxiliaries needed to make up a working power plant.

- Easy-to-install, pre-built solution for power needs of 7 to 30 MW
- Ultimate combination of efficiency and flexibility. Over 48% efficiency after only 5 minutes from start
- Same fuel flexibility and low environmental impact as the Wärtsilä 34SG gas power plant
- Easy to expand with additional modules if power need grow with time
- Quickest building and commissioning time
- Perfect for fast-track EPC deliveries.

<table>
<thead>
<tr>
<th>KEY FIGURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See legend on p. 16</td>
</tr>
</tbody>
</table>

- **7-30 MW**
- **> 100 %/min**
- **1-3 X W34SG**
- **30 % 3 %**
- **2300 m²/30MW**
- **48%**

<table>
<thead>
<tr>
<th>SYNC</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 min</td>
<td><10 min</td>
</tr>
<tr>
<td><2 min</td>
<td><5 min</td>
</tr>
<tr>
<td>N/A</td>
<td><1 min</td>
</tr>
</tbody>
</table>
BONTANG, Indonesia

<table>
<thead>
<tr>
<th>Customer</th>
<th>PT PLN (Utility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Wärtsilä GasCube</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Flexible baseload</td>
</tr>
<tr>
<td>Gensets</td>
<td>2 x Wärtsilä 16V34SG</td>
</tr>
<tr>
<td>Total output</td>
<td>14 MW</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
</tr>
<tr>
<td>Scope</td>
<td>EPC (Engineering, Procurement & Construction)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2009</td>
</tr>
</tbody>
</table>
MULTI-FUEL POWER PLANTS

Multi-fuel power plants make power generation more reliable by being able to adapt to any situations that may occur regarding fuel availability or affordability.

They can even switch fuels while running, for example changing to liquid fuel mode if the gas supply is suddenly interrupted. This capability provides 24/7 security of supply, hedge against fuel price increases and preparation for future fuel infrastructure development.

Wärtsilä’s multi-fuel power plants can run in the following operation modes:

- **Gas only** *(with liquid pilot fuel)*
 - Natural gas, LNG, biogas, associated gas *(GD only)*. Insensitive to gas quality

- **Liquid fuel only**
 - Crude oil, diesel, residual oil, fuel-water emulsions, liquid biofuel

- **Fuel sharing mode** *(in GD plants)*
 - Gas and liquid fuel simultaneously
 - Fuel switch without power decrease
 - Automatic and instant trip to liquid fuel mode in alarm situations
Wärtsilä 50DF multi-fuel power plant
High efficiency in a small footprint combined with high reliability and flexibility. Can operate equally well on gas, HFO and LFO; and switch between them on the run.

Perfect for: Flexible baseload

Wärtsilä 34DF multi-fuel power plant
Agile and flexible, this plant delivers power with high efficiency and reliability. Starting, stopping and changing fuels is not a problem for this plant.

Perfect for: Peak load, flexible baseload

Wärtsilä 34DF grid stability / emergency multi-fuel power plant
Designed for minimised own consumption and extremely fast response to emergency situations, and able to supply megawatts in a matter of seconds. Adding multi-fuel capability to excellent dynamic features, this plant provides maximum supply security.

Perfect for: Standby & emergency, peak load

Wärtsilä 32GD and 46GD multi-fuel power plants
Especially designed to use low-grade fuels, like associated gas, flare gas or crude oil, optimal for fuel supply varying in quantity and quality.

Perfect for: Flexible baseload, reduction of gas flaring

Want to know more?
Scan this QR code with your smartphone, tablet or webcam and have an in-depth look at our multi-fuel technology. Or you can simply type goo.gl/QmQgby in your web browser
WÄRTSILÄ 50DF
MULTI-FUEL POWER PLANT

Multi-fuel operation with high efficiency combined with high reliability and flexibility makes this solution perfect for flexible baseload applications including daily starts and stops, also providing ancillary services like regulation up&down.

- Most efficient multi-fuel simple-cycle solution, with over 48% efficiency
- Can operate on natural gas or any liquid fuel, including HFO, and switch between them back and forth while delivering power to the grid.
- Full power can be achieved with a wide range of gas qualities. A varying methane number or heating value do not affect the operation
- Combination of low emissions in gas mode with an efficient liquid fuel mode that can use low-grade fuel oils
- Robust, reliable genset, proven in the most challenging environments

KEY FIGURES

See legend on p. 16

<table>
<thead>
<tr>
<th></th>
<th>SYNC</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GAS) <3</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>(LIQ) <3</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>(GAS) <3</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>(LIQ) <1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50-700 MW</th>
<th>> 100 %/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-36 x 18V50DF</td>
<td>30 %</td>
</tr>
<tr>
<td>17000 m²/100MW</td>
<td>48%</td>
</tr>
<tr>
<td></td>
<td>< 1 min</td>
</tr>
</tbody>
</table>
SUCCESS STORY

The world’s largest combustion engine-based power plant, located in Jordan, is a perfect example of the power and flexibility that the Wärtsilä 50DF can offer, even in extremely challenging ambient conditions.

Scan the QR code or visit goo.gl/dsSSuG to read the full success story

—Mr Young Jin Bae, CEO, AAEPC

<table>
<thead>
<tr>
<th>IPP3, Jordan</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>AAEPC (IPP)</td>
</tr>
<tr>
<td>Type</td>
<td>Wärtsilä 50DF multi-fuel power plant</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Flexible baseload</td>
</tr>
<tr>
<td>Gensets</td>
<td>38 x Wärtsilä 18V50DF</td>
</tr>
<tr>
<td>Total output</td>
<td>573 MW</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas, HFO & LFO</td>
</tr>
<tr>
<td>Scope</td>
<td>EPC (Engineering, Procurement & Construction)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2014</td>
</tr>
</tbody>
</table>
WÄRTSILÄ 34DF
MULTI-FUEL POWER PLANT

Multi-fuel operation with full agility and flexibility combined with high efficiency over the whole load range and in any operating profile makes this plant excellent for both flexible baseload and peak load, and supporting the grid with a variety of ancillary services like up- and down-regulation.

- Ultimate combination of efficiency, operational flexibility and fuel flexibility
- Can operate on natural gas or any liquid fuel, including HFO, and switch between them back and forth while delivering power to the grid.
- Full power can be achieved with a wide range of gas qualities, a varying methane number or heating value do not affect the operation
- Combination of low emissions in gas mode with an efficient liquid fuel mode that can use low-grade fuel oils
- Genset is easily transported in one piece to challenging locations

KEY FIGURES
See legend on p. 16

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SYNC</td>
<td>FULL</td>
</tr>
<tr>
<td></td>
<td>GAS</td>
<td>(GAS) <3</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>LIQ</td>
<td>(LIQ) <1</td>
<td><6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-400 MW</td>
<td>> 100 %/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-36 X 20V34DF</td>
<td>30 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7000 m²/100MW</td>
<td>48%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 %</td>
<td></td>
<td>< 1 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See legend on p. 16
<table>
<thead>
<tr>
<th>LOS ORÍGENES, Dom. Republic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Gensets</td>
</tr>
<tr>
<td>Total output</td>
</tr>
<tr>
<td>Fuel</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Delivered</td>
</tr>
</tbody>
</table>
WÄRTSILÄ 34DF GRID STABILITY/EMERGENCY MULTI-FUEL POWER PLANT

The most flexible power plant in all aspects, always ready to deliver power to the grid instantly and efficiently, on any fuel. This makes the plant perfect for peaking and reserve power applications in any current or future fuel supply environment.

- Ultra fast start capability provides megawatts to the grid in seconds and full plant output in a just over 2 minutes
- Able to provide non-spinning secondary reserve thanks to a 20-second ultra fast sync time
- High efficiency in any operating profile
- Able to provide grid blackstart capability and re-energize a grid on diesel or low-pressure gas
- Extremely low standby consumption, <1 kW per MW of installed power
- Genset is easily transported in one piece to challenging locations

KEY FIGURES

See legend on p. 16

- Ultra fast start capability: GAS <3 min, LIQ <1 min
- Full start capability: GAS <2 min, LIQ <1 min
- Synchronization time: 0:20 min:sec
- Efficiency: GAS 48%, LIQ 45%
- Standby consumption: <1 kW per MW of installed power
- MW range: 20-400
- Size: 7000 m²/100MW
Elering, the Estonian Transmission System Operator, recently added 250MW of reserve capacity to the national grid by means of a Wärtsilä 34DF Grid stability/emergency multi-fuel power plant. Operating mainly on natural gas but capable of using LFO as a backup, it ensures the national grid is safe and sound at all times.

Scan the QR code or visit goo.gl/Z25C8z to read the full success story

We had end results that needed to be met and Wärtsilä’s engines simply offered an unrivalled solution

—Ilo Toom, Project Manager, Elering

<table>
<thead>
<tr>
<th>KIISA, Estonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Gensets</td>
</tr>
<tr>
<td>Total output</td>
</tr>
<tr>
<td>Fuel</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Delivered</td>
</tr>
</tbody>
</table>
WÄRTSILÄ 32GD
MULTI-FUEL POWER PLANT

Seamless operation regardless on fuel make this plant great for flexible baseload and industrial self-generation. Especially designed to use low-grade fuels, like associated gas, flare gas or crude oil, it is optimal for fuel supply varying in quantity and quality.

- Ultimate fuel flexibility
- Can operate on natural gas or any liquid fuel, and switch between them back and forth while delivering power to the grid.
- Unique fuel-sharing mode: adjust the fuel mixture according to the availability of gas and top up with liquid fuel
- Genset is easily transported in one piece to challenging locations

The Wärtsilä 46 plant is also available in GD version, with the same fuel flexibility features as the Wärtsilä 32GD

KEY FIGURES
See legend on p. 16

<table>
<thead>
<tr>
<th></th>
<th>SYNC</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-400 MW</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td><6</td>
</tr>
<tr>
<td>1-24 X 20V32GD</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td><3</td>
</tr>
<tr>
<td>17700 m²/100MW</td>
<td>45%</td>
<td>N/A</td>
</tr>
</tbody>
</table>
GD OPERATION: Original gas-diesel operation mode, where gas is the main source of energy, and pilot fuel oil injection is used to ignite the combustion. Available at any point between 30-100% of rated load, the plant can transfer to and from GD operation within this same range.

FUEL SHARING: Available between 30-100% of rated load. Simultaneous combustion of gaseous and liquid fuel, in a ratio that can be adjusted flexibly. The fuel share set point can be adjusted online. The operator may also change the set point at any time during operation.

FUEL OIL OPERATION: Regular Diesel-principle combustion. Available for the whole load range and for any of the mentioned liquid fuels.

<table>
<thead>
<tr>
<th>KALIAKOIR, Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Gensets</td>
</tr>
<tr>
<td>Total output</td>
</tr>
<tr>
<td>Fuel</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Delivered</td>
</tr>
</tbody>
</table>
LIQUID FUEL POWER PLANTS

LIQUID FUEL

POWER PLANTS

Liquid fuel power plants make power available anywhere, anytime. Proven long-term reliability makes these plants suitable for stationary and floating baseload, and for stand-by applications.

Wärtsilä liquid fuel power plants bring great value to the table, such as:

- Tremendous fuel flexibility, with the possibility of running on heavy fuel oil, light fuel oil, crude oil, emulsified fuels or liquid biofuel
- Great dispatch ability, ability to supply megawatts to grid within seconds, and reach full plant load in minutes
- Utilising heavy fuel oil (HFO) in the most efficient way possible
Wärtsilä 46 & Wärtsilä 50DF* liquid fuel power plants
High efficiency combined with high reliability and flexibility. Able to use any kind of fuel oil, excellent for covering larger and stable power demands. Powered by the most efficient diesel combustion engine in the world.

Perfect for: Baseload, Flexible baseload

Wärtsilä 32 liquid fuel power plant
Agile and flexible, this plant delivers power with high efficiency, even in the most challenging ambient and operational conditions. Based on the W32 prime mover with more than 100 million cumulative running hours.

Perfect for: Flexible baseload, peak load

Wärtsilä 32 grid stability / emergency liquid fuel power plant
Based on the Wärtsilä 32 genset, the fastest response in the whole market are the features of this plant.

Perfect for: Standby & emergency, peak load

Wärtsilä OilCube
Fully pre-engineered solution for quick installation time with all the great features of the Wärtsilä 32 liquid fuel power plant.

Perfect for: Small-sized power plants

Want to know more?
Scan this QR code with your smartphone, tablet or webcam and have an in-depth look at our liquid fuel technology. Or you can simply type goo.gl/T5ZyWn in your web browser
WÄRTSILÄ 46 & WÄRTSILÄ 50DF* LIQUID FUEL POWER PLANTS

High efficiency and power on any liquid fuel combined with high reliability and flexibility make this solution perfect for flexible baseload applications including daily starts and stops, also providing ancillary services like up– and down– regulation.

- Most efficient simple-cycle liquid fuel solution, up to 47% efficiency
- Can operate on any liquid fuel, including HFO, LFO, liquid biofuel, crude oil or fuel-water emulsions
- Robust, reliable genset, proven in the most challenging environments
- Most compact HFO power plant in terms of footprint

*This Wärtsilä 50DF plant is optimized for liquid fuel operation, providing the same features as the Wärtsilä 46 plus the option to switch to gas when it becomes available.

KEY FIGURES

See legend on p. 16

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-700 MW</td>
<td></td>
</tr>
<tr>
<td>> 100 %/min</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>47%</td>
</tr>
<tr>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>12600 m²/100MW</td>
<td></td>
</tr>
<tr>
<td>Sync</td>
<td><3</td>
</tr>
<tr>
<td>Full</td>
<td><15 min</td>
</tr>
<tr>
<td>3-36 X 18V46</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>47%</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

40
<table>
<thead>
<tr>
<th>Customer</th>
<th>Gov. of East Timor (Utility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Wärtsilä 46 liquid fuel power plant</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Baseload</td>
</tr>
<tr>
<td>Gensets</td>
<td>8 x Wärtsilä 18V46</td>
</tr>
<tr>
<td>Total output</td>
<td>137 MW</td>
</tr>
<tr>
<td>Fuel</td>
<td>HFO</td>
</tr>
<tr>
<td>Scope</td>
<td>EEQ (Engineered Equipment Delivery)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2011</td>
</tr>
</tbody>
</table>
WÄRTSILÄ 32
LIQUID FUEL POWER PLANT

Agility and flexibility combined with high efficiency over the whole load range and in any operating profile makes this plant excellent for both flexible baseload and peak load, and also for supporting the grid with a variety of ancillary services.

- Ultimate combination of efficiency, operational flexibility and wide range of liquid fuels capability
- Two-stage turbocharging applied to the W20V32TS engine maintains efficiency and power regardless of challenging ambient conditions, like high altitudes or hot temperatures
- Can operate on any liquid fuel, including HFO, LFO, liquid biofuel or crude oil
- Genset is easily transported in one piece to challenging locations

KEY FIGURES
See legend on p. 16

<table>
<thead>
<tr>
<th></th>
<th>SYNC</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td><1</td>
<td><6</td>
</tr>
<tr>
<td>MW</td>
<td><1</td>
<td><3</td>
</tr>
<tr>
<td>$m^2/100$</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

42
<table>
<thead>
<tr>
<th>BATAKAN, Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Gensets</td>
</tr>
<tr>
<td>Total output</td>
</tr>
<tr>
<td>Fuel</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Delivered</td>
</tr>
</tbody>
</table>
WÄRTSILÄ 32 GRID STABILITY/EMERGENCY LIQUID FUEL POWER PLANT

Always ready to deliver power to the grid instantly and efficiently in any operating profile makes this plant perfect for peaking and reserve power applications.

- Ultra fast start capability provides megawatts to the grid in seconds and full plant output in less than 3 minutes
- Able to provide non-spinning secondary reserve thanks to a 20-second ultra fast sync time
- Able to provide grid blackstart capability and re-energize a grid
- Extremely low standby consumption, <1 kW per MW of installed power
- Genset is easily transported in one piece to challenging locations

KEY FIGURES
See legend on p. 16

<table>
<thead>
<tr>
<th>Metric</th>
<th>Sync</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td><1</td>
<td><6 min</td>
</tr>
<tr>
<td>kW</td>
<td><1</td>
<td><3 min</td>
</tr>
<tr>
<td>sec</td>
<td>0:20</td>
<td>1:00 min:sec</td>
</tr>
<tr>
<td>%</td>
<td>30%</td>
<td>3%</td>
</tr>
<tr>
<td>m²/100MW</td>
<td>5400</td>
<td>46%</td>
</tr>
</tbody>
</table>

Genset is easily transported in one piece to challenging locations.
<table>
<thead>
<tr>
<th>UTE VIANA, Brazil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Gensets</td>
</tr>
<tr>
<td>Total output</td>
</tr>
<tr>
<td>Fuel</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Delivered</td>
</tr>
</tbody>
</table>
WÄRTSILÄ OILCUBE

All the great features of a Wärtsilä 32 plant in a compact, ready-to-use pre-engineered package designed for fast delivery time with minimal site work. Consists of a self-contained design with one or several modules, each housing one W12V32, W16V32, W20V32 or W20V32TS genset, plus all the auxiliaries needed to make up a working power plant.

- Easy-to-install, pre-built solution for power needs of 5 to 30 MW
- Great fuel flexibility like the Wärtsilä 32 liquid fuel power plant
- Easy to expand with additional modules if power need grow with time
- Quickest building and commissioning time
- Especially designed for environments where infrastructure may be challenging
- Perfect for fast-track EPC deliveries.

KEY FIGURES

See legend on p. 16

- **SYNC**: <1 min
- **FULL**: <6 min
- **5-30 MW**: >100 %/min
- **1-4 x W32**: N/A
- **3000 m²/30MW**: <1 min
- **η**: 46%
Flexicycle ™ is an innovative concept trademarked by Wärtsilä, which combines the excellent dynamic capabilities of combustion engines with the superb efficiency offered by combined cycle solutions.

By adding a waste heat recovery system to the plant, consisting of a heat recovery steam generator for each engine and a common steam turbine and condenser for the plant, total efficiency can be improved by a very significant 3-4% according to this catalogue. The plant can switch between single or combined cycle modes upon request, getting the best of both worlds.

When the steam cycle is equipped with an air-cooled condenser, the total water consumption of the plant is negligible, making it also suitable for areas where water is a crucial resource.
With 2.7 GW delivered to this day, Flexicycle™ represents the ultimate solution for flexible baseload plants, in either its gas-fired or multi-fuel configuration.

One configuration, two switchable operational modes, and the advantages of both single and combined cycle: excellent flexibility and unmatchable efficiency.

Want to know more?
Scan this QR code with your smartphone, tablet or webcam and have an in-depth look at our Flexicycle™ technology. Or you can simply type goo.gl/w84j1t in your web browser.
FLEXICYCLE™ 50SG
GAS POWER PLANT

Adding a flexible steam cycle (Flexicycle™ to the highly efficient Wärtsilä 50SG engines makes this solution perfect for flexible baseload or even pure baseload applications. Due to the flexibility of the 50SG engine, this solution can provide all desirable ancillary services.

- Most efficient flexible baseload solution: up to 54% efficiency without compromising flexibility
- Gas-fired combined-cycle flexible baseload solution
- Suited for a larger amount of running hours per year, it can serve large power needs with a very high efficiency
- Can start up quickly and inexpensively with extremely high efficiency
- Can switch between two operation modes:
 - Dynamic single cycle (SC) (with all the benefits from a Wärtsilä 50SG gas power plant) with up to 49% efficiency
 - Combined cycle (CC), reaching up to 53% efficiency

KEY FIGURES

See legend on p. 16

<table>
<thead>
<tr>
<th>Sync</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SC) < 2</td>
<td>< 10 min</td>
</tr>
<tr>
<td>(CC) < 40</td>
<td>< 60 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60-700 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 100% /min</td>
</tr>
</tbody>
</table>

| 3-36 X 18V50SG + STEAM TURBINE |
| 30% | 3% |

<p>| 5600 m²/100MW |
| 50% (SC) | 54% (CC) | < 1 min |</p>
<table>
<thead>
<tr>
<th>Customer</th>
<th>ODAŞ Enerji (IPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Flexicycle™ 50SG gas power plant</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Flexible baseload</td>
</tr>
<tr>
<td>Gensets</td>
<td>7 x Wärtsilä 18V50SG</td>
</tr>
<tr>
<td>Total output</td>
<td>140 MW</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
</tr>
<tr>
<td>Scope</td>
<td>EEQ (Engineered Equipment Delivery)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2011</td>
</tr>
</tbody>
</table>
FLEXICYCLE™ 50DF
MULTI-FUEL POWER PLANT

Adding a flexible steam cycle (Flexicycle™) to the highly efficient Wärtsilä 50DF engines makes this the ultimate solution for flexible baseload, with complete fuel flexibility.

- Most efficient multi-fuel flexible baseload solution: up to 52% efficiency without compromising flexibility
- Suited for a larger amount of running hours per year, it can serve large power needs with a very high efficiency
- Can operate on natural gas or any liquid fuel, including HFO, and switch between them back and forth while delivering power to the grid
- Can start up quickly and inexpensively with extremely high efficiency
- Can switch between two operation modes:
 - Dynamic single cycle (SC) (*with all the benefits from a Wärtsilä 50SG gas power plant*) with up to 48% efficiency
 - Combined cycle (CC), reaching up to 52% efficiency

KEY FIGURES

See legend on p. 16

- **60-700** MW
- **3-36 X 18V50DF + STEAM TURBINE**
- **6100** m²/100MW
- **> 100** %/min
- **SYNC** (SC) <3 <15 min
- **FULL** (CC) <40 <60 min
- **SYNC** (SC) <3 <10 min
- **FULL** (CC) <30 <45 min
- **SYNC** (SC) <3 <1 min
- **FULL** (CC) <1 min
- **30 %**
- **3 %**
- **N/A**
Barrick and EGE Haina teamed up to build twin Flexicycle™ 50DF multi-fuel power plants in the Dominican Republic, providing efficient and reliable power to a new gold mine and the local community at once.

Scan the QR code or visit goo.gl/Ni67WF to read the full success story

We can vary the dispatch to match the load without sacrificing efficiency or suffering maintenance impacts.

—Bernerd L. Grill, Commercial Mgr, Barrick

<table>
<thead>
<tr>
<th>QUISQUEYA, Dom. Republic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Gensets</td>
</tr>
<tr>
<td>Total output</td>
</tr>
<tr>
<td>Fuel</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Delivered</td>
</tr>
</tbody>
</table>
Wärtsilä’s floating power plants integrate our expertise in marine technology with the many benefits of flexible, decentralised power generation.

Floating power plants are based on tested components and system solutions. They are constructed cost-effectively and rapidly in a well-controlled industrial setting. When towed into place and connected to the grid, the plants are fully functional, providing a fail-safe option even in the remotest locations and under the most challenging ambient conditions.

Floating power plants can also provide a rapid answer to an increase in power demand in advance of new, land-based plants. Our turnkey solutions include site preparation and operation and maintenance services, according to customer needs. The lead time from contract to start-up of commercial operations is short, guaranteeing a quick return on investment.

Wärtsilä offers floating power plants based on any of the gensets reviewed previously in this catalogue.

Want to know more?
Scan this QR code with your smartphone, tablet or webcam and have an in-depth look at our floating power technology. Or you can simply type goo.gl/fzk5s6 in your web browser.
Why a floating power plant?
- Provides fast supply of electricity to areas with limited infrastructure
- Is a mobile asset, possible to relocate or trade
- Does not require a large site
- Is not dependent of soil quality
- Provides secure power supply in the event of an earthquake or flood

<table>
<thead>
<tr>
<th>Customer</th>
<th>Seaboard Corporation (IPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Flexicycle™ 50DF multi-fuel floating power plant</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Flexible baseload</td>
</tr>
<tr>
<td>Gensets</td>
<td>6 x Wärtsilä 18V50DF</td>
</tr>
<tr>
<td>Total output</td>
<td>106 MW</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas & HFO</td>
</tr>
<tr>
<td>Scope</td>
<td>EPC (Engineering, Procurement & Construction)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2010</td>
</tr>
</tbody>
</table>
Combined Heat and Power (CHP) and Trigeneration plants use fuel in the most efficient way and at the same time help to reduce carbon dioxide emissions. Total plant efficiencies can reach over 90% depending on the application. Wärtsilä’s CHP plants can run on various liquid, gaseous and bio fuels, while maintaining low emissions and high efficiency.

Thanks to a hang-on heat recovery system, the plant will maintain the same high electrical efficiency and output, regardless of the heat production and ambient conditions. The products can be steam and hot or cold water.

In Trigeneration power plants, Wärtsilä can deliver three valuable products for the customer; electricity, heating and cooling - all this in just one power plant. This is possible without sacrificing the high reliability and superb flexibility of an ordinary Wärtsilä power plant.

Wärtsilä offers CHP solutions to all customers with substantial heating demands such as utilities and municipalities. Also large facilities such as airports, shopping centers and other building complexes can utilize the Wärtsilä CHP and Trigeneration solutions.

Wärtsilä offers CHP & trigeneration power plants based on any of the gensets reviewed previously in this catalogue
Benefits of Wärtsilä CHP solutions:

- A wide heat load range enables flexible operation
- An efficient plant with a high power-to-heat ratio enables more electricity production
- Multiple units with fast start and ramp rates enable dynamic operation during low heat demand seasons at high efficiency
- Good dynamic capabilities (multiple units) enable opportunities in ancillary services
- CHP plants are optimized for maximizing the customer’s profitability in any existing DH network
- High efficiency and flexible operation over a wide load range
- Dynamically able to respond to electricity price variations and to support intermittent, inflexible generation
- Flexibility can be further improved with heat storage.
- Proven track record of more than 11 GW of installed Wärtsilä CHP plants

Want to know more?
Scan this QR code with your smartphone, tablet or webcam and have an in-depth look at our CHP & Trigeneration technology. Or you can simply type goo.gl/FDvXc1 in your web browser.
Total attainable efficiency for a Wärtsilä CHP system depending on hot water supply and return temperatures

Coupling of the hang-on CHP system, which enables the extremely high total efficiency of the plant without affecting its electrical output
<table>
<thead>
<tr>
<th>Customer</th>
<th>Györi Hőszolgáltató (Utility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Wärtsilä 34SG gas CHP power plant</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Flexible baseload</td>
</tr>
<tr>
<td>Gensets</td>
<td>3 x Wärtsilä 18V34SG</td>
</tr>
<tr>
<td>Total output</td>
<td>17 MWth + 18 MWe</td>
</tr>
<tr>
<td>Fuel</td>
<td>Natural gas</td>
</tr>
<tr>
<td>Scope</td>
<td>EPC (Engineering, Procurement & Construction)</td>
</tr>
<tr>
<td>Delivered</td>
<td>2002 & 2003</td>
</tr>
</tbody>
</table>
Natural gas accounts today for more than 25% of the global primary energy consumption and is expected to reach 30% by the end of this decade. LNG is playing an important role in this expansion and trade volumes are expected to reach more than 10% of total gas trading volume.

A considerable part of LNG growth will come from the small and medium size LNG value chain. This means LNG distribution for natural gas pipelines, industries, power plants and for the transportation sector, for both marine and land based will increase.

WÄRTSILÄ
LNG SOLUTIONS

LNG TERMINALS
our LNG Terminal portfolio range is based on storage tank capacity
Wärtsilä, with its extensive EPC experience at land and sea, has entered the entire LNG value chain offering state-of-the-art solutions.

LNG TERMINALS
Wärtsilä has EPC solutions for small and medium scale LNG terminals with or without power plants.

LNG/LBG LIQUEFACTION PLANTS
Wärtsilä has EPC solutions for small and medium scale liquefaction plants in the range of 4 000 - 300 000 TPA.

LIQUEFACTION PLANTS

our Liquefaction plant portfolio range is based on annual capacity (TPA = tonnes per annum)

<table>
<thead>
<tr>
<th>Mini liquefaction plants</th>
<th>Small scale liquefaction plants</th>
<th>Medium scale liquefaction plants</th>
</tr>
</thead>
<tbody>
<tr>
<td><4 000 TPA</td>
<td>4 000 - 20 000 TPA</td>
<td>20 000 - 300 000 TPA</td>
</tr>
</tbody>
</table>

- Mixed refrigerant process
- Reverse Brayton cycle
MODULARITY

A module is a self-contained component of a system, which has a well-defined interface to the other components. Something is modular if it includes or uses modules, which can be interchanged as units without disassembly of the module. As energy demand grows, the high modularity of Wärtsilä’s products makes it easy to expand a power plant to meet increasing future demand.

The common interfaces and flexibility of Wärtsilä’s modular design, fulfilling a range of specifications and recommendations, addresses both the demand of today’s customer and potential future needs. The focus of modularisation is around the engine and inside the power house, even though modules are also used elsewhere, starting with the unloading of fuel, lubricating oil and other process-related items. By using predefined modular solutions, Wärtsilä can ensure that set performance targets are reached.
Rapid installation time is one of the main benefits. Prefabrication also ensures consistent high quality. Other benefits include the compact and predefined design for container transportation, and the use of well-proven components from well-known suppliers. The use of portfolio modules leads to higher documentation quality during the tender phase. When compared to carrying out such work on site, the controlled manufacturing, cleaning, and painting processes associated with modularisation, have a positive environmental impact. For our customers, modularised design means higher return of their power plant investment.

Some of the benefits of modularisation are:

- A **pre-designed solution** that can be customised to suit specific needs
- **Fast and easy installation** on site
- **Proven design**
- **Reliable and thorough** quality control
- **Optimised piping** layout
- **Compact assembly**
- **Standardised connection** interfaces
- **Optimised transport** dimensions
ELECTRICAL & AUTOMATION

The Wärtsilä Power Plant Electrical and Automation concept provides a complete plant management solution with standardised modules, generators, switchgears and transformers, which can be tuned to the customers or utility requirements. Wärtsilä Power Plant Automation is based on the following building blocks. All these systems have been developed with complete integration, and have clear and easy user interfaces providing a uniform interface and logic for the operators.

- **WOIS** (Wärtsilä Operators Interface System) is the operator’s workstation, for process displays, control actions, trends, alarm and event lists
- **WISE** (Wärtsilä Information System Environment) is the workstation for reports, logbook, electronic documentation and 3rd party interfaces
- **UNIC** is the engine embedded control system, handling all the control, monitoring and protection functions of the engine, together with the PLC
- **PLC** based process control system handles all the control, monitoring and control functions of the genset and plant equipment
Remote connection provides a secure internet or satellite link, to give remote access to the information in the WOIS and WISE systems.

Condition Based Maintenance (CBM) reporting system, is a subscriber based condition evaluation and reporting system created by Wärtsilä experts.

An optional Archiving Station enables a lifelong storage of the plant’s operational data.

AUTOMATED OPERATION MODES
Operational flexibility is applied in the same package supporting either baseload, intermediate, peak load or stand-by power generation. Thanks to the intelligent controllers, the Wärtsilä solution provides:

- True MW control with embedded frequency support and power factor control for easy plant power management and import/export control.
- Isochronous load sharing of both active and reactive power for island mode operation support.
- Droop mode as a backup and traditional operation mode.

All these operating modes are inbuilt and transfer between the modes is automatic and smooth.
EMISSIONS REDUCTION AND MONITORING

Wärtsilä Power Plants maintains a high level of expertise in emission cleaning methods for power plant effluents and stack emissions, in order to offer a variety of proven reduction technologies for different market needs.

EMISSIONS REDUCTION FOR GAS POWER PLANTS

Sulphur dioxide (SO2) and particulate matter (PM) emissions are insignificant for power plants running on natural gas. Nitrogen oxide (NOX) emissions are also low.

DRY METHODS (PRIMARY)

Wärtsilä gas engines use a lean-burn combustion process. In this process, natural gas and air are premixed in a low fuel/air ratio (lambda 2-2.5) before being fed into the cylinders. The lean-burn process efficiently reduces NOX emissions due to a lower combustion temperature. Another advantage with the lean-burn process is the increased output and efficiency of the engine. Wärtsilä gas engines have sufficiently low NOX emissions to comply with most national/local regulations using lean-burn primary method only.

SELECTIVE CATALYTIC REDUCTION (SCR)

In areas with more stringent control of NOX emissions the engines can be equipped with SCR units. In the SCR, NOX is reduced by a catalyst, combined with a reagent that is either an aqueous solution of urea or ammonia.

OXIDATION CATALYSTS

Gas (SG) engines and multi-fuel (DF) engines can be equipped with oxidation catalysts for the abatement of carbon monoxide (CO) and/or hydrocarbon (HC) emissions, if required by national regulations.
WÄRTSILÄ IOXI
The Wärtsilä IOXI (Integrated Oxidation Catalyst) is a compact, cost efficient solution for moderate CO and formaldehyde (CH₂O) reduction from gas engines. Gas engines equipped with IOXI ensure compliance with most stack emission limits.

COMBINED SCR AND OXIDATION CATALYST
In some areas efficient multi-component emissions reduction is required. The combined catalyst system comprises SCR for NOX emissions and oxidation catalyst for CO and/or HC emissions.

Humboldt, Eureka, California (10 x Wärtsilä 18V50DF, 162 MW)
The multi-fuel DF engines can operate on light fuel oil as back-up. The plant is equipped with combined SCRs and oxidation catalysts and meets the strict Californian emission requirements both in gas and liquid fuel mode.
EMISSIONS REDUCTION FOR LIQUID FUEL POWER PLANTS

Nitrogen oxides (NOX), sulphur dioxide (SO2) and particulate matter (PM) are the main emissions of interest regarding stationary liquid fuel engines. SO2 and PM emissions are mainly related to the quality of the liquid fuel. Wärtsilä liquid fuel engines have low carbon monoxide (CO) and hydrocarbon (HC) emissions thanks to their high thermal efficiency.

Wärtsilä’s liquid fuel power plants are designed to meet the stack emission limits set by the World Bank/IFC Guidelines for liquid fuel power plants up to 300 MWth (~140MWe) in non-degraded airsheds by using dry primary methods. Secondary flue gas treatment methods are available for more strict regulations, or when only low grade liquid fuels are commercially available.

DRY METHODS (PRIMARY)

The primary method (Low NOx combustion process) used in Wärtsilä liquid fuel engines is designed for the best overall emissions performance, while maintaining the good thermal efficiency of the engine. The main elements of the Low NOx combustion process are:

- Late fuel injection start
- High compression ratio
- Optimised combustion chamber
- Optimised fuel injection rate profile
- Early inlet valve closing (Miller concept) together with high boost pressure.

These are the key elements for suppressing the combustion peak temperatures, resulting in reduced NOX formation.

SELECTIVE CATALYTIC REDUCTION (SCR)

Wärtsilä’s liquid fuel power plants can be equipped with SCR units to reduce NOx emissions if required.
NOx emissions are typically reduced by up to 80–90% by using a reagent that is either an aqueous solution of urea or ammonia. The composition and structure of the catalyst element are selected based on fuel properties. At high reduction rates, the size of the SCR reactor increases and more complicated premixing and reagent injection systems are needed. In addition the control system becomes very critical due to operation within a narrow window.

FLUE GAS DE-SULPHURISATION (FGD)

Several FGD types are available for the power plant market. The most feasible methods in stationary engine plants have generally been proven to be wet sodium hydroxide (NaOH) FGD in smaller plants, and wet calcium carbonate (CaCO₃) FGD in larger plants. Wet FGD systems are typically capable of removing up to 90% of the SO₂ emissions. All wet FGD solutions require large quantities of water and reagents.

The FGD end products, either liquid or solid depending on the chosen FGD technique, need to be disposed of in an environmentally acceptable way. The composition of the end product depends on the fuel oil used, lubrication oil, process water and reagents. The disposal and utilisation options available for the end product should be examined in the environmental assessment of the project.

ELECTROSTATIC PRECIPITATOR (ESP)

A dry ESP unit can be used to reduce PM emissions. The ESP technique provides a stable, low pressure-loss option to reduce PM emissions. ESP’s dry end product, fly ash, needs to be disposed of in an environmentally acceptable way. The composition of the end product depends on the fuel and lubrication oil used. The disposal and utilisation options available for the end product should be examined in the environmental assessment of the project.
CONTINUOUS EMISSIONS MONITORING (CEMS)

In cases where continuous data on emission levels is required, indicative or parametric emissions monitoring systems will provide robust, good quality and cost efficient emissions monitoring. In these systems, emissions are calculated based on process data, such as engine parameters, fuel composition and ambient data. In some installations, continuous emissions monitoring systems (CEMS) based on analysers are required.

There are many different CEMS on the market and the choice of system needs to take into careful consideration the installation’s specific features, such as measured components, fuel and stack configuration. The integration of emissions data handling and reporting into the plant system is a crucial part of a successful emissions monitoring system.
REDUCING CONTAMINATED WATER

The oily water collection and treatment system is an essential part of the engine power plant. The system is designed to collect water from areas that are potentially contaminated with oil and other impurities for treatment. Before discharge from the plant, contaminated water can be either treated on-site by the Wärtsilä oily water treatment (OWT) unit or transported for proper treatment. In areas that are subject to stringent effluent limits, biological treatment might also be required. Wärtsilä Senitec Biosys is a biological treatment system for grey water, treated oily water and/or similar effluents from power plants.
A global team of power plant project developers and finance professionals in Wärtsilä Development & Financial Services (WDFS) offers expert services to Wärtsilä’s customers worldwide.

FINANCIAL SERVICES
WDFS supports clients with advice and assistance in deal structuring and financing. Through its strong relationships with both local and international financing institutions, including export credit agencies (ECA), commercial banks and development banks, WDFS is well positioned to structure financing to suit each customer’s requirements. A manufacturing presence in several countries provides a competitive advantage for accessing ECA guarantees and funding, especially through Finnvera (Finland) and SACE (Italy). WDFS also offers financial advisory services including financial modelling and feasibility studies.

PROJECT DEVELOPMENT
WDFS develops independent power producer (IPP) projects based on Wärtsilä combustion engine technology and know-how with a focus on environmentally responsible power projects with sound financing structures. With a proven track record since 1991, WDFS has successfully developed and closed over 30 highly feasible IPP projects (approx. 3500 MW) around the world. WDFS structures and negotiates project financing for IPP projects on a limited recourse or non-recourse basis. WDFS has over the years proven its ability to mobilize capital from multilateral and bilateral institutions, local and international commercial banks, and equity investors.
The Power Plants Project Management organisation plans, leads, manages and executes projects for our customers. We support our customers with cost estimates, scheduling and project planning. The projects are managed by our personnel using professional project management methodology and best practices, which have been developed over the years within Wärtsilä Power Plants.

We have broad experience in building power plants in challenging geotechnical locations, including areas where earthquakes, landslides, swelling soil and liquefaction may occur. The project locations range from the African jungle to the Siberian tundra.
The properties of foundations and structures are selected individually to ensure the best possible outcome taking all the ambient conditions into consideration. The buildings mainly consist of high-quality prefabricated structures to ensure shorter construction time and improved risk assessment. By choosing the right materials, even the energy efficiency can be improved, while the plant’s environmental impact is significantly reduced.

Our aim is also to enhance safety and offer the best possible working conditions for the plant operators.

Wärtsilä’s civil engineer teams have conducted more than 500 projects over three decades with an unbeatable track record. Our services include everything from pre-planning inspections to installation.

Wärtsilä offers the following options of scope of supply & contract types:
Basic EEQ (Basic Engineered Equipment Delivery) is the most basic service where only the main equipment and related auxiliaries are engineered and supplied. The service includes configuration and engineering for supplied equipment and materials, transport, and technical advisory for installation and commissioning.

Extended EEQ (Extended Engineered Equipment Delivery) is a complete supply solution for defined scope including detailed engineering for total solutions, all materials and equipment plus technical advisory services for installation and commissioning. The customer needs to hire a contractor to perform installation and civil works on site.

Process EPC includes the same features as EPC, but installation is only done above floor level. Subsoil and foundation works, underground materials supply and site works are performed or subcontracted by the customer.

EPC (Engineering, Procurement & Construction) is a solution where the customer has only one point of contact, thereby minimising their risks. The contract covers project management, site management and supervision, engineering, materials and equipment, civil works, foundation and site infrastructure works, transport and installation, and commissioning, as well as schedule and performance guarantees for the entire solution.

EPCM (Engineering, Procurement, Construction & Management) is a service contract adding Construction Management services to the scope. It includes construction and site management, project and construction scheduling, sub-contracting, site supervision and documentation services for site works and subcontracts. It includes assistance to customers in local work, monitoring and reporting on the performance of subcontractors. This service contract is made in connection with extended EEQ contracts.
POWER PLANT LIFECYCLE

Optimising your operations and preventing the unexpected is our shared passion – we serve you whenever, wherever.

With nearly 7 GW of power plants under asset management agreements and close to 5 GW under maintenance agreements, Wärtsilä is recognised by customers as their preferred service supplier in ensuring the availability and cost-efficient operation of their installations. They benefit from having their entire power system fully serviced by one global supplier.

Wärtsilä serves and supports customers in improving and optimising their operational efficiency throughout the whole lifecycle of the installation. Our Services organisation currently features more than 11 000 dedicated professionals in 70 countries.

Our Services solutions cover everything from product support with parts, field service and technical support, to
service agreements, performance optimisation including upgrades and conversions, environmental solutions, training, and online support.

The choice available extends from parts and maintenance services to a variety of comprehensive, customised long-term service agreements, including performance and asset management agreements.

On the basis of our experience in operating and maintaining more than 500 installations located in 58 different countries, and through the know-how and support of Wärtsilä’s worldwide organisation, a Wärtsilä service agreement has become established as a proven and reliable instrument for both parties.

Wärtsilä adds value to your business at every stage in the lifecycle of your installations. With us as your service partner, you receive many measurable and guaranteed benefits, such as availability and performance, productivity gains and cost benefits. Above all, you have peace of mind in the knowledge that your installation is being serviced by the most experienced partner you could have – Wärtsilä.
OPERATION OF A MULTI-UNIT POWER PLANT

There are often significant seasonal, weekly and daily variations in power demand. In a multi-unit power plant the units can be started and stopped as per demand. It is possible to optimise the usage of each single unit by choosing to either provide spinning reserve or to run it flat-out to obtain maximum efficiency.

A multi-unit power plant can be run in various ways dependent on the situation at hand. Basically, there are two main operating principles:

In **spinning mode**, the gensets are synchronized and running, but at a reduced load. This way the plant is fully ready to take large, immediate load increases just in seconds.

In **efficiency mode**, the minimum amount of gensets are running at full load to meet the current load demand, thereby allowing them to operate at their best thermal efficiency. Still, the remaining gensets, which are in stand-by mode, can come online and reach full load in a matter of a few minutes to meet any unforeseen load increases.

Plant features in the two different operation modes
COMBUSTION ENGINE MAINTENANCE

Maintenance of gas, dual fuel and liquid fuel engines is easy. Keeping strategic spare parts for exchange purposes on site considerably reduces the downtime required for maintenance. All maintenance can be effectively performed on site. One engine at a time can be maintained, without affecting the operation of the other units of the plant.

The multi-unit setup means that the annual average unit running hours, depending on the actual load profile, can be considerably lower than the annual plant running hours. In a multi-unit plant the units can be dispatched, so that the running hours are unequally spread on each unit. This allows for scheduling the maintenance one unit at a time, thereby maximising the available power generation capacity at any given time. Ideally, the maintenance is scheduled at periods of lower power demand.

For Wärtsilä’s combustion engines there is no equivalent operating hours (EOH) calculation. This means that the maintenance schedule is not affected by the number of starts and stops.
MAINTENANCE SCHEDULING

Thanks to condition-based, flexible maintenance, engine servicing can be performed when it best suits the customer’s operations. The following figures illustrate three different scheduling principles for the maintenance of a Wärtsilä power plant.

Principle 1: One at a time
- Maximum firm capacity due to sequential maintenance of one unit at a time
- High reliability and unsensitiveness to unschedule maintenance outages thanks to multiple units
Principle 2: All at once

- Availability of the full plant output when it is most needed, by concentrating all maintenance in the off-season
- Minimised maintenance costs
- High reliability and unsensitiveness to unschedule maintenance outages thanks to multiple units
Combining Principles 1 and 2:

- Adjustable maintenance schedule suitable for seasonal operating variations
- Allows fluctuating business to switch between the maintenance profiles as needed
RELIABILITY & AVAILABILITY

Thanks to the multi-unit configuration, the highest availability and reliability targets can be achieved.

The below figure illustrates the typical operational availability of a Wärtsilä power plant. If the plant capacity matches the actual maximum load (corresponding to the power generated by n units), the availability of the plant capacity is above 96.5%. By adding a stand-by unit, the availability can be increased to >99%, and a second stand-by unit further raises the availability to >99.9%.
Wärtsilä power plants are able to run on a wide selection of fuels, ranging from natural gas to fuel-water emulsions. Detailed specifications for the approved fuels are available upon request.

<table>
<thead>
<tr>
<th>Gaseous fuels</th>
<th>Liquid fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas</td>
<td>Natural gas</td>
</tr>
<tr>
<td>LNG</td>
<td>LNG</td>
</tr>
<tr>
<td>Biogas</td>
<td>Biogas</td>
</tr>
<tr>
<td>Associated gas</td>
<td>Associated gas</td>
</tr>
<tr>
<td>Coal bed natural gas</td>
<td>Coal bed natural gas</td>
</tr>
<tr>
<td>Shale gas</td>
<td>Shale gas</td>
</tr>
<tr>
<td>LFO</td>
<td>LFO</td>
</tr>
<tr>
<td>HFO</td>
<td>HFO</td>
</tr>
<tr>
<td>Crude oil</td>
<td>Crude oil</td>
</tr>
<tr>
<td>Liquid biofuel</td>
<td>Liquid biofuel</td>
</tr>
<tr>
<td>Fuel-water emulsion</td>
<td>Fuel-water emulsion</td>
</tr>
</tbody>
</table>

APPROVED FUELS

<table>
<thead>
<tr>
<th>Gas</th>
<th>Multi-fuel</th>
<th>Liquid fuel</th>
<th>Flex cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärtsilä 50SG</td>
<td>Wärtsilä 50DF</td>
<td>Wärtsilä 50DF HFO-optimized</td>
<td>Flexicycle 50SG gas</td>
</tr>
<tr>
<td>Wärtsilä 34SG</td>
<td>Wärtsilä 34DF</td>
<td>Wärtsilä 46</td>
<td>Flexicycle 50DF multi-fuel</td>
</tr>
<tr>
<td>Wärtsilä 34SG grid stability</td>
<td>Wärtsilä 34DG Grid stability</td>
<td>Wärtsilä 32</td>
<td></td>
</tr>
<tr>
<td>Wärtsilä GasCube gas setup</td>
<td>Wärtsilä GasCube multi-fuel setup</td>
<td>Wärtsilä OilCube</td>
<td></td>
</tr>
<tr>
<td>Wärtsilä GasCube gas setup</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GASEOUS FUELS & LNG

NATURAL GAS
Natural gas consists mainly of methane plus small quantities of heavier hydrocarbons, carbon dioxide and nitrogen. Commercial gas is processed to meet specifications for heating value, Wobbe index and cleanliness.

LIQUEFIED NATURAL GAS (LNG)
LNG is natural gas that has been converted to liquid form for easier transport and storage. LNG takes up about 1/600th of the volume of natural gas in gaseous state.

COAL BED NATURAL GAS
Coal bed natural gas is found in underground coal layers. It contains methane, water and carbon dioxide in varying proportions. Coal bed gas contains more heavier hydrocarbons than conventional natural gas, but no natural gas condensate.

SHALE GAS
Shale gas is natural gas trapped in fine-grained sedimentary rock, particularly quartz and calcite. Together with coal bed gas and methane hydrates, shale gas is an unconventional source of natural gas.

BIOGAS
Biogas is the result of treating organic matter in digesters or through other decomposing processes. The resulting gas consists mainly of methane and carbon dioxide.

ASSOCIATED GAS
Associated gas is separated from crude oil in field degassing equipment. The methane content is lower than in natural gas, but the concentration of heavier hydrocarbons is higher, normally yielding a higher energy density. GD engines are very suitable for burning associated gas, also when operating in fuel sharing mode.
LIQUID FUELS

LIGHT FUEL OIL
Light fuel oils or diesel oils are high value distillates that have traditionally been used to fuel diesel engine power plants, both for stand-by operation and baseload applications. The use of light fuel oils in baseload applications has decreased since it has become possible to use cheaper lower grade fuels. There are, however, certain applications, such as backup power plants, and installations on islands and in arctic conditions, where light fuel oil is still the preferred alternative.

HEAVY FUEL OIL
Heavy fuel oils are blended products based on the residues from refinery distillation and cracking processes. They are black viscous liquids which require heating for storage and combustion. Heavy fuel oils are used for diesel engines in power plant and marine applications.

CRUDE OIL
Crude oil is a highly complex mixture of hydrocarbons and other components. The flash point of crude oil is low, typically below the ambient temperature. Crude oil can
also be used as fuel in power plants with diesel engines, for example in oilfield power production. Another application is for pumping stations located along a crude oil pipeline, where fuel from the pipeline can be used for the prime movers.

LIQUID BIOFUELS

Liquid biofuels are derived from biological material and can be produced from a variety of carbon sources. Common liquid biofuels approved for use in Wärtsilä engines include oils from various oilseeds, such as palm oil, palm stearin, rape seed oil, sunflower oil and jatropha oil. Liquid biofuels can also be of non vegetable origin, i.e. oils or fats from fish, poultry and animals. Refined biofuel qualities, such as transesterified biodiesel or hydrogenated renewable diesel, can also be used.

FUEL-WATER EMULSIONS

An oil-in-water type emulsion is one way of utilising the residue coming from a refinery as fuel in a diesel power plant. By making an emulsion with water the viscosity is dramatically reduced, enabling it to be pumped at ambient temperature in warm countries. Using it in the diesel engine requires only a fraction of the heating needed for heavy fuel oil.
POWER PLANT GENSETS

The core of a power plant solution is the genset. Wärtsilä gensets consist of a four-stroke medium-speed engine, connected to a generator via a flywheel and coupling, mounted on a common baseframe. The genset is aligned, fine-tuned and pre-tested in the factory, fully ready for installation with minimal work at site.

Small and medium sized gensets (based on 32/32TS/32GD/34DF/34SG) are normally transported as complete gensets. If required by the logistics of the project, the gensets can also be delivered split into two blocks: engines mounted on the baseframe and generators shipped separately.

Larger gensets (based on 46/50/46GD/50DF/50SG engines) are normally delivered in two blocks: engine and generator mounted on its own base frames, ready to be bolted together at site. This allows a considerably reduced transportation weight.
<table>
<thead>
<tr>
<th>Fuel</th>
<th>Engine (speed, 50/60 Hz)</th>
<th>Cylinder configuration</th>
<th>Power, electrical (kW, 50Hz)</th>
<th>Power, electrical (kW, 60Hz)</th>
<th>Genset dry weight (tonne), ±5%</th>
<th>Reduced transport weight (tonne), ±5%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wärtsilä 50SG (500/514 rpm)</td>
<td>18V50SG</td>
<td>18320</td>
<td>18760</td>
<td>365</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9L34SG</td>
<td>4340</td>
<td>4170</td>
<td>77</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16V34SG</td>
<td>7740</td>
<td>7430</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20V34SG</td>
<td>9730</td>
<td>9340</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wärtsilä 34SG (750/720 rpm)</td>
<td>18V50DF</td>
<td>16640</td>
<td>17080</td>
<td>369</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9L34DF</td>
<td>4340</td>
<td>4170</td>
<td>79</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16V34DF</td>
<td>7740</td>
<td>7430</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20V34DF</td>
<td>9730</td>
<td>9340</td>
<td>134</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wärtsilä 46GD (500/514 rpm)</td>
<td>12V46GD</td>
<td>11380</td>
<td>11380</td>
<td>272</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18V46GD</td>
<td>17080</td>
<td>17080</td>
<td>370</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6L32GD</td>
<td>2640</td>
<td>2580</td>
<td>58</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9L32GD</td>
<td>3970</td>
<td>3890</td>
<td>79</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12V32GD</td>
<td>5300</td>
<td>5180</td>
<td>93</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16V32GD</td>
<td>7120</td>
<td>6970</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20V32GD</td>
<td>8920</td>
<td>8730</td>
<td>131</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wärtsilä 32GD (750/720 rpm)</td>
<td>18V50DF</td>
<td>18320</td>
<td>18760</td>
<td>368</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12V46</td>
<td>11380</td>
<td>11380</td>
<td>269</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18V46</td>
<td>17080</td>
<td>17080</td>
<td>368</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6L32</td>
<td>2640</td>
<td>2580</td>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9L32</td>
<td>3970</td>
<td>3890</td>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12V32</td>
<td>5330</td>
<td>5210</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16V32</td>
<td>7120</td>
<td>6970</td>
<td>117</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18V32</td>
<td>8030</td>
<td>7840</td>
<td>128</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20V32</td>
<td>8920</td>
<td>8730</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wärtsilä 32TS (750/720 rpm)</td>
<td>18V32TS</td>
<td>10120</td>
<td>9730</td>
<td>160</td>
<td>-</td>
</tr>
</tbody>
</table>
Wärtsilä France s.a.s.
Services France Sud-Est
Enceinte portuaire - PORTE 4
Site CIMM, 13344 Marseille Cedex 15
Tel.. +33 4 91 03 99 20
Fax... +33 4 91 03 99 21

Wärtsilä France s.a.s.
Services France Nord, Centre et Est
22 rue Fulgence Bienvenue
F-92238 Gennevilliers Cedex
Tel.. +33 1 41 21 84 20
Fax... +33 1 41 21 84 29

Wärtsilä France s.a.s.
Services France atlantique
La Combe - BP 1213
F-17700 Surgeres Cedex
Tel.. +33 5 46 30 31 32
Fax... +33 5 46 07 35 37

GERMANY
Wärtsilä Deutschland GmbH
Schlenzigstraße 6-8
21107 Hamburg
Tel.. +49 (0) 40 751 90 225
Fax... +49 (0) 160 901 92 832

GREECE
Wärtsilä Greece S.A.
25, Akti Miaoulis, 18535 Piraeus
Tel.. +30 210 413 5450
Fax... +30 210 411 7902

GUATEMALA
Wärtsilä Guatemala, S.A
10a. Calle 12-50 Zona 14,
Ofibodegas La Villa, Bodega 18,
01014 Guatemala
Tel.. +502 23 84 9600
Fax Sales:............................ +502 23 84 9610

HUNGARY
Wärtsilä Hungary Kft.
H-2040 Budaörs, Gyár u. 2.
Tel.. +36 23 532 127
Fax... +36 23 532 128

INDIA
CORPORATE OFFICE
Wärtsilä India Ltd
Kesar Solitaire, 21st Floor,
Plot No.5, Sector No.19,
Palm Beach Road, Sanpada,
Navi Mumbai 400 705
Tel.. +91 22 27818300 / 8550

SALES & SERVICE OFFICES
Wärtsilä India Ltd
B-Wing, 6th Floor, Rama Bhavan Complex,...
Kodialbail, Mangalore - 575 003
Tel.. +91 824 2441 722 / 2444 577
Fax... +91 824 2443 556

Wärtsilä India Ltd
A-98, Sector - 5, Distt. Gautm Budh Nagar,
Noida – 201 301 (U.P.)
Tel.. +91 120 4192000
Fax... +91 120 4192099

Wärtsilä India Ltd
Camac Tower, 3rd Floor, 3C Camac Street
Kolkata - 700 016
Tel.. +91 33 2226 9567 / 2217 2320
Fax... +91 33 2249 7535

Wärtsilä India Ltd
Shreyas Vridhidhi, 132, Velachery Main Road
Guindy, Chennai 600 032
Tel.. +91 44 22301080-88
Fax... +91 44 22301089

Wärtsilä India Ltd
9-1-129/1, Flat # 301/3, 3rd Floor,
Oxford Plaza, Sarojini Devi Road,
Secunderabad - 500 003, Andhra Pradesh
Tel.. +91 40 2771 5383
Fax... +91 40 2771 5377

INDUSTRIAL OPERATIONS
Wärtsilä India Ltd
Gate No.1, Opp. Govt Rest House,
Mumbai - Pune Road,
Shilphata, Dist.Raigad, Khopoli-410 203
Tel.. +91 02192 262896
Fax... +91 02192 263314

SPARE PARTS OFFICE
Wärtsilä India Ltd
Gate No. 2, Opp. Govt Rest House,
Mumbai - Pune Road, Shilphata
Dist. Raigad, Khopoli - 410 203
Tel.. +91 2192 262896 / 97
Fax... +91 2192 262692

INDONESIA
PT Wärtsilä Indonesia
Cikarang Industrial Estate, Jl. Jababeka XVI
Kav. W-28, Cikarang Bekasi 17530
Tel.. +62 21 893 7654
Fax... +62 21 893 7660

PT Wärtsilä Indonesia
Tempo Scan Tower Building. 19th Floor
Jl. H.R. Rasuna Said Kav. 3 – 4, Kuningan
Jakarta Selatan 12950
Tel.. +62 21 5793 0515
Fax... +62 21 5793 0516
ITALY
Wärtsilä Italia S.p.A.
Bagnoli della Rosandra 334
34018-S.Dorligo della Valle Trieste
Tel.. +39 040 319 5000
Fax...................................... +39 040 827 371

Wärtsilä Italia S.p.A.
B.U. Power Plants
Piazza Duca D’Aosta, 8
20124 Milano
Tel................................. +39 026 697 648
Fax.................................. +39 026 698 9215

JAPAN
Wärtsilä Japan Ltd
6-7-2 Minatojima
Chuo-ku, Kobe 650-0045
Tel................................. +81 78 304 7512
Fax.................................. +81 78 302 5143

Wärtsilä Japan Ltd
5th Floor, NTC Building
1-11-2 Kyobashi, Chuo-ku, Tokyo 104-0031
Tel................................. +81 3 5159 8746
Fax.................................. +81 3 3564 1736

KENYA
Wärtsilä Eastern Africa Ltd.
House of Vanguard, Fuji Plaza, 5th Floor
P.O. Box 66 782 00800 Nairobi,
Chiromo Road, Westlands
Tel................................. +254-20-448 7988, 444 7989
Fax.................................. +254-20-444 6719, 444 7102

MALAYSIA
Wärtsilä Malaysia Sdn. Bhd.
Suite C-10-05, Plaza Mon’t Kiara, No. 2,
Jalan 1/70C, 50480 Kuala Lumpur
Tel................................. +60 36203 5072
Fax.................................. +60 36203 5073

MEXICO
Wärtsilä de Mexico
Avenida Edzna #7 Interior 3,
Colonia Mundo Maya. C.P.24150.
Cd. del Carmen, Campeche, Mexico.
Tel................................. +52 938 138 1500
Fax.................................. +52 938 138 1517

THE NETHERLANDS
Wärtsilä Netherlands B.V.
Hanzelaan 95, 8017 JE Zwolle
P.O. Box 10608, 8000 GB Zwolle
Tel................................. +31 38 425 3253
Fax.................................. +31 38 425 3976

NORWAY
Wärtsilä Norway AS
5420 Rubbestadneset
Tel................................. +47 53 42 25 00
Fax.................................. +47 53 42 25 01

Power Sales for Norway
Wärtsilä Sweden AB
Box 8006, 40277 Gothenburg
Tel................................. +46 317444600
Fax.................................. +46 317444670

PAKISTAN
Wärtsilä Pakistan (Pvt) Ltd.
16-kilometer, Raiwind Road
P.O.Box 10104, Lahore
Tel................................. +92 (0)42 35418846
Fax.................................. +92 (0)42 35419833

Wärtsilä Pakistan (Pvt) Ltd.
Plot No. F-8, KDA Scheme 1
Tipu Sultan Road, Karachi
Tel................................. +92-21-34375830
Fax.................................. +92-21-34375822

PERU
Wärtsilä Perú S.A.C.
Pasaje Martir Olaya N#129,
Oficina 604s, Miraflores, Lima-18
Tel................................. +51 1 241 7030
Fax.................................. + 51 1 444 6867

PHILLIPINES
Wärtsilä Philippines, Inc.
No.6 Diode Street, Light Industry & Science
Park I, Cabuyao, Laguna 4025
Tel................................. +63 49 543 0382/+63 2 843 7301
Fax.................................. +63 49 543 0381/+63 2 843 7305

POLAND
Wärtsilä Polska Sp. z.o.o.
Ul. Jakuba Kubickiego 13
02-954 Warszawa
Tel................................. +48 22 550 6172
Fax.................................. +48 22 550 6173
WORLDWIDE CONTACTS

PORTUGAL
Wärtsilä Portugal, S.A.
Zona Industrial Da Maia I
Sector X - Lote 362/363,
Apartado 1415, P 4471-909 Maia Codex
Tel.............................+351 22 943 9720
Fax............................+351 22 943 9729

PUERTO RICO
Wärtsilä Caribbean Inc.
P.O. Box 7039, Carolina, PR 00986-7039
Street address:
Julio N Matos Industrial Park, Road 887, km 0.6 Street A, Lot No. 5, Carolina, PR 00987
Tel..................................+1 787 701 2288
Fax..................................+1 787 701 2211

RUSSIA
Wärtsilä Vostok LLC
4th Dobryninsky Pereulok, 8,
office E02-300, Moscow, 119049, Russia
Tel............................+7 495 937 75 89
Fax............................+7 495 937 75 90
Wärtsilä Vostok LLC
Business centre Linkor
36 A Petrogradskaya naberezhnaya
St. Petersburg, 197101 Russia
Tel............................+7 812 448 32 48
Fax............................+7 812 448 32 40 / 41

SAUDI ARABIA
Wärtsilä Power Contracting Company Ltd.
Khalid Ibn Al Walied Street
P.O. Box 2132, Jeddah - 21451
Tel............................+966 2 651 9001
Fax............................+966 2 650 3882

SENEGAL
Wärtsilä West Africa S.A.
B.P.21.861 Dakar-Ponty, Km 4.5,
Bd du Centenaire de la Commune de Dakar
Tel............................+221 338 49 39 90
Fax............................+221 338 32 10 25

SINGAPORE
Wärtsilä Singapore Pte. Ltd.
11, Pandan Crescent, Singapore 128467
Tel............................+65 6265 9122
Fax............................+65 6264 3186

SOUTH AFRICA
Wärtsilä South Africa (Pty) Ltd.
2nd Floor, West Tower, Maude Street,
Nelson Mandela Square, Sandton, 2196
Tel............................+27 021 511 1230
Fax............................+27 021 511 1412

SOUTH KOREA
Wärtsilä Korea Ltd.
651-16 Eomgung-dong, Sasang-gu,
Busan, 617-831
Tel............................+82 51 329 0500
Fax............................+82 51 324 4350

SPAIN
Wärtsilä Ibérica S.A.
Poligono Industrial Landabaso, s/n,
Apartado 137, 48370 Bermeo (Vizcaya)
Tel............................+34 94 617 01 00
Fax............................+34 94 617 01 12

SRI LANKA
Wärtsilä Lanka (Pvt) Ltd
77, Negombo Road, Wattala
Tel............................+94 11 2980907
Fax............................+94 11 4816422

SWEDEN
Wärtsilä Sweden AB
Box 8006, SE-40277 Gothenborg
Tel............................+46 31 744 4600
Fax............................+46 31 744 4670

SWITZERLAND
Power Sales for Switzerland
Wärtsilä France s.a.s.
Les Collines de l’Arche, Immeuble Opera E
76, Route de la Demi-Lune
F-92057 Paris La Defense Cedex
Tel............................+33 1 47 76 89 20
Fax............................+33 1 47 76 89 21

THAILAND
Wartsila Singapore Pte Ltd (Thailand)
571 RSU Tower Unit 4-5, 10th Floor
Sukhumvit 31, Sukhumvit Road,
Klongton-Nua, Wattana, Bangkok,
Thailand 10110
Fax............................+66 26623416
The information in this document is subject to change without notice and the given data does not carry any contractual value. Wärtsilä assumes no responsibility for any errors that may appear in this document.
Wärtsilä is a global leader in complete lifecycle power solutions for the marine and energy markets. By emphasising technological innovation and total efficiency, Wärtsilä maximises the environmental and economic performance of the vessels and power plants of its customers.

In 2013, Wärtsilä’s net sales totalled EUR 4.7 billion with approximately 18,700 employees. The company has operations in nearly 170 locations in 70 countries around the world. Wärtsilä is listed on the NASDAQ OMX Helsinki, Finland.