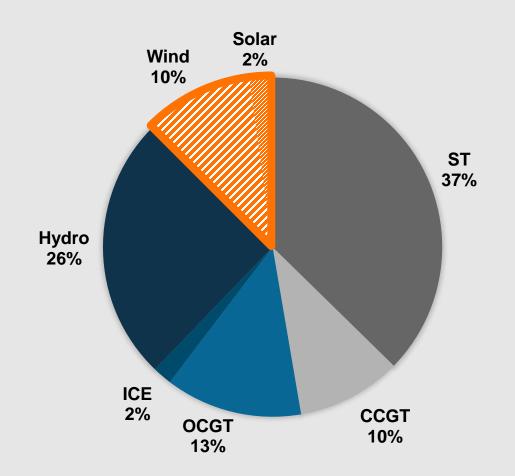
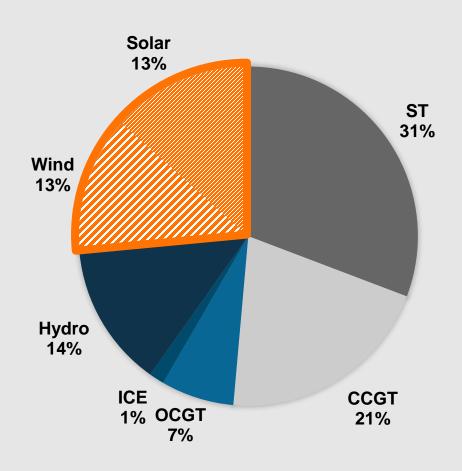

WÄRTSILÄ ENERGY SOLUTIONS

THE NEED FOR FLEXIBLE ENERGY IN MOROCCO

The power demand and peak demand is expected to grow with ~4% annually until 2025

Source: GlobalData, ONEE


MOROCCO HAS AMBITIOUS TARGETS FOR INCREASING THE SHARE OF INTERMITTENT RENEWABLE ENERGY SOURCES IN THE POWER MIX UNTIL 2025



Forecasted capacity mix until 2025

INSTALLED CAPACITY 2015

INSTALLED CAPACITY 2025

SOLAR

 Morocco is an excellent location for solar power

The aim is to add about 2 GW solar power during the upcoming 5 – 10 years

The technology will be a mix of CSP and PV plants

WIND

- The "Moroccan 2 000 MW wind program" until 2020
- 8 large-scale projects of which several are already online and under construction

LNG

 LNG terminal in Jorf Lasfar with a capacity of 2 million tons of LNG annually

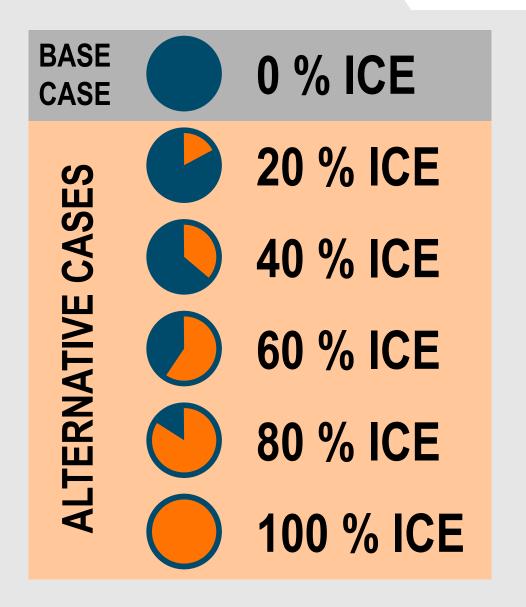
 Pipeline between Jorf Lasfar and Tangier, approx. 400 km

 Conversion of OCGT's and CCGT's to LNG operation

2 400 MW new gas-fired thermal capacity

With increasing amounts of intermittent and unpredictable renewable energy sources, flexibility is needed in the system.

BASE CASE


 All the proposed 2 400 MW gas fired units to be CCGT's

ALTERNATIVE CASES

 Replace the proposed CCGT's with increasing amounts of internal combustion engines (ICE)

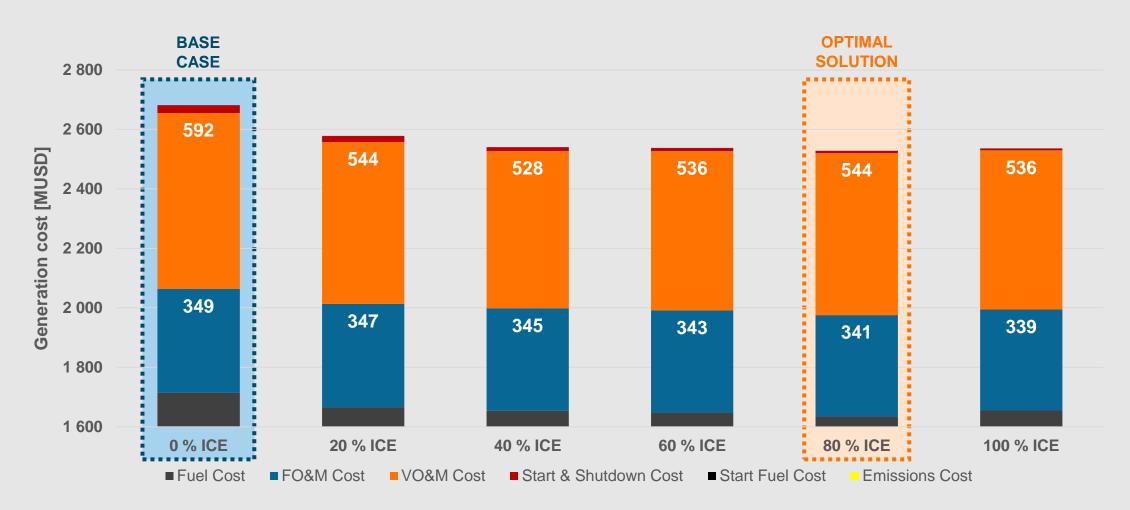
TARGET

 minimize total generation cost and manage the intermittent renewables in the grid

Power plants included in the modelled Moroccan power system

All new build assets are marked with red font

Power plant	Installed capacity
Coal fired	
ST Jerada	165 MW
ST Jorf Lasfar	2 056 MW
ST Kenitra	300 MW
ST Mohammadia (Coal)	300 MW
ST Mohammadia (Oil)	300 MW
New build ST Jerada Extension	318 MW
New build ST Safi	1 386 MW
Combined cycle gas turbines	
CCGT Ain Beni Mathar	450 MW
CCGT Tahaddart	384 MW
New build CCGT	0 MW – 2 400 MW


Power plant	Installed capacity
Open cycle gas turbines	
GT Kenitra II	315 MW
GT Mohammedia (Oil)	99 MW
GT Mohammedia TAG	300 MW
GT Tanger	40 MW
GT Tetouan	139 MW
GT Tit Mellil	198 MW
Internal combustion	
engines	
ICE Ed Dakhla	38 MW
ICE Tan-Tan	117 MW
New build ICE Laayoune	72 MW
New build ICE Wärtsilä	0 MW – 2 400 MW

Power plant	Installed capacity
Hydro	
Pumped storage	472 MW
Reservoir	1 087 MW
Run of river	98 MW
New build Pumped storage	350 MW
New build Reservoir	125 MW
Renewables	
Solar CSP	180 MW
Solar PV	2 MW
Wind	847 MW
New build Solar CSP	1 450 MW
New build Solar PV	470 MW
New build Wind	1 220 MW
Interconnections	
SpainLINK	900 MW

Already a small amount of ICE in the Moroccan system would create savings

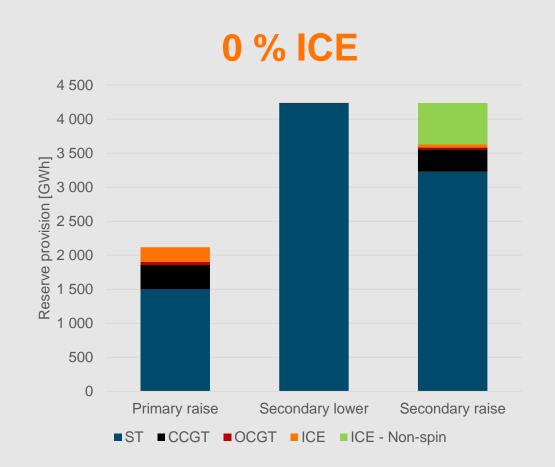
Non-spinning reserve by ICE

CAPACITY FACTORS

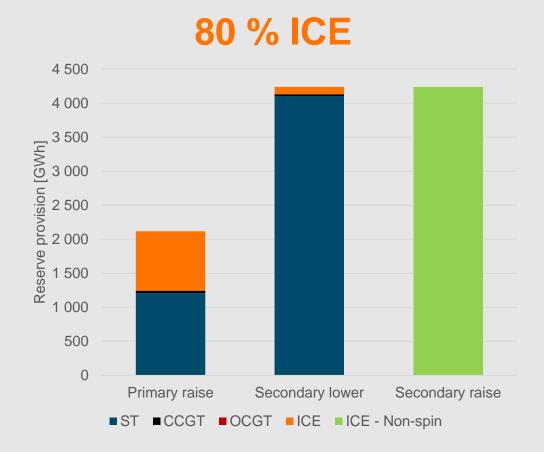
Small improvements in capacity factors of large thermal plants

0 % 10	CE 8	0 %	CE
--------	------	-----	----

ST	65%	72 %
CCGT	12%	5%
OCGT	2%	0%
ICE	6%	5%
Solar	46%	46%
Wind	34%	34%
Hydro	14%	13%

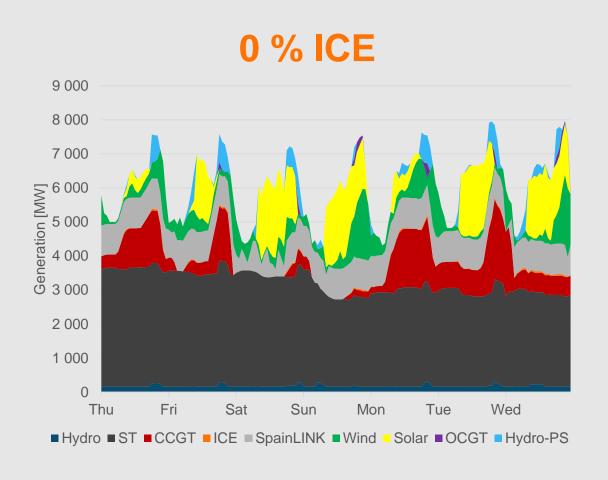


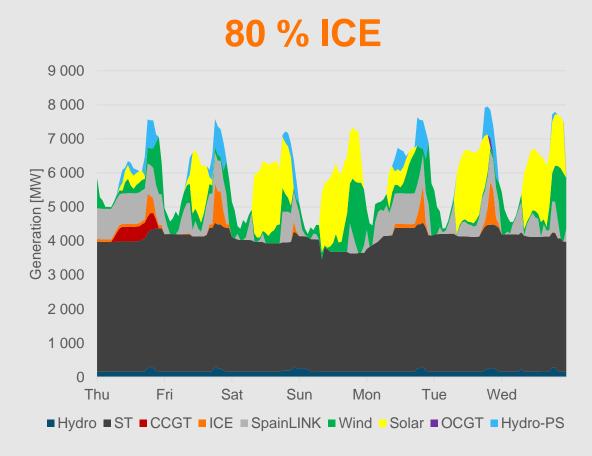
Power system reserves


Assumed reserve margins:

Primary: 4%

Secondary raise & lower: 8 %


Engines are providing secondary reserve as non-spinning



13

Adding fast starting and ramping engines to the system reduces the amount of cycling in the large thermal plants

Spain LINK

	Link	Annual
	utilization	power
0 % ICE	79 %	6 235 GWh
20 % ICE	68 %	5 370 GWh
40 % ICE	64 %	5 080 GWh
60 % ICE	66 %	5 218 GWh
80 % ICE	68 %	5 382 GWh
100 % ICE	66 %	5 227 GWh

SUMMARY

 Engines brings stability to the Moroccan grid

• Annual savings:

150 MUSD

 Large amount of the power system reserves can be provided as non-spinning

LET'S TALK

Jerome Jouaville

Business Development Manager, Africa West

Tel.: <u>+33 6 74 97 52 25</u> E-mail: <u>jerome.jouaville@wartsila.com</u>

