

Wärtsilä R&D update: Good progress in future fuels development program

Juha Kytölä Director, R&D and Engineering

4 September 2023

MMO Z WÄRT

We continue to invest in innovation to ensure a broad, industry-leading solution offering

R&D expenditure, MEUR ——% of net sales

* Figure in the comparison period 2021 has been restated to reflect a change in the definition of research and development expenditure.

Stepwise approach in development ensures maximum quality, high return on investment and highest safety standards

The Research & technology value stream: from research to markets

© WÄRTSILÄ

New engine portfolio is based on common, modular architecture

Modularity built around customer requirements. Architecture is the foundation for product governance.

- Full portfolio introduced in 2022
- Built from customer requirements for customers
- Modularity enables conversions for future fuels in the future

Moving from single-fuel industry to multi-fuel

Investment in fuel flexibility secures customers' asset lifetime

Owners will decide on technology partners now:

- Vessel life is 25-30 years
- Critical decision criteria:
 - Multifuel capabilities for blending with green fuels
 - Conversion capabilities for future fuels

Distribution of fuel types for Decarbonisation 2050 (1.5°C scenario), exajoule

Source: DNV Maritime Forecast 2050 model, Wärtsilä internal estimates

Methanol: capability to power marine engines with carbon neutral solutions

Wärtsilä 32 Methanol – the power to reach carbon-neutral

Methanol technology applied on proven and reliable W32 engine

Sustainability and flexibility

- Zero power loss during fuel switch
- Lowest emissions
- High performance in all applications

Applications

- Electricity production
- Auxiliary engine
- Variable Speed Main Engine

Ammonia: advancing from industrial chemical to zero-carbon ship fuel through R&D and collaboration

Hydrogen: from blends to 100% hydrogen

Hydrogen blending – from the lab to our customers

Conducted testing – October 2022

• WEC Energy group (US, 3 x Wärtsilä 50SG)

Agreed testing

• Capwatt (Portugal, 1 x Wärtsilä 34sg)

Under discussion

- US, Wärtsilä 50DF
- UK, Wärtsilä 34SG
- India, Wärtsilä Vasa 34SG
- Japan, Wärtsilä Vasa 34SG

Key takeaways (WEC, US):

- Successful engine testing with up to 25% blends
- CO2 and GHG emission reductions
- No mechanical changes to engine, stable engine behaviour

GAS COMPRESSION magazine

Wärtsilä To Test Hydrogen-Blended Fuel In Michigan Power Plant

Fuel conversions will play a vital role in the fuel transition for both existing and new vessels built during this and next decade. Fuel selection impacts the vessel structure

Fuel type	Heavy Fuel Oil @ 20°C	Liquified Natural Gas @ -162°C	Methanol @ 20°C	Ammonia @ -33°C	Liquid Hydrogen @ -253°C	Compressed Hydrogen @350bar	Marine Battery Rack
Key considerations	 Standard tank arrangement 	 Cryogenic system 	 Mildly toxic Flexible tank arrangement 	ToxicCorrosive	 Highly reactive Cryo system 	 High pressure Multiple tanks arrangement 	 Marine adaptation reduces density
Fuel price factor	1X	0.7X	2.2X-5.4X ²⁾	2.2X-4.5X ³⁾	2.7X-4.5X ³⁾	1.6X-2.6X ³⁾	1.3X-2.3X
(per GJ)	Production cost estimate 2025 1						
Gross tank size factor	1X ⁴⁾	2.4X	1.7X	3.9X	7.3X	19.5X	~40X (future potential ~20X)

1) Sources: Maersk Mc-Kinney Møller Center for Zero Carbon Shipping – Industry transition strategy 2021, Wärtsilä-DNV collaboration; 2) fuel price for e-methane is expected to be in a range similar to e-methanol; 3) fuel price range spans across blue, bio and green-electro equivalent; 4) gross tank estimations based on Wärtsilä experience

© Wärtsilä

Hybrid technologies developed to enable environmental efficiency

Wärtsilä has vast experience of hybrid installations

104 vessels → 211 MWh energy storage

Merchant

New Build

54 vessels 83,675 kWh

Retrofit

2 vessels 1,124 kWh

80.1 MWh

Cruise & ferry		
New Build	16	vessels
	98,984	kWh
Retrofit	1	vessels
	1000	kWh

60.0 MWh

Offshore

New Build

0 vessels 0 kWh

Retrofit

22 vessels 19,454 kWh

18.7 MWh

Specials New Build

Retrofit

7 vessels 4,587 kWh

2 vessels 2,234 kWh

6.8 MWh

First retrofit contract: 2012 First new build contract: 2016

Full electric ships

Wärtsilä has developed full solutions for electric ships

- Wärtsilä is providing technology for the biggest battery electric ship – Incat Tasmania, 130 metres long ferry
- Electric propulsion is becoming possible in specific routes with charging arrangements in harbours
- Wärtsilä delivery: Waterjet propulsion, power conversion system, DC shore charging system, 40 MWh battery modules, DC hub, electric motors, propulsion control system
- Shipyard Incat Tasmania, customer Buquebus in South America. Vessel delivery in 2025

New hybrid electric concept for Marine

Wärtsilä 4-stroke technology outperforms in sustainability

- Merchant vessels traditionally use mechanical propulsion drive with 2-stroke engines
- Decarbonisation calls for frequent efficiency improvements during vessel lifetime. Electrification gives a lot of opportunities
- Wärtsilä 4-stroke technology developed for electrical power plants gives efficiency and flexibility, enabling additions of batteries, fuel cell, wind assist etc with no compromise in efficiency

